Narrow your search
Listing 1 - 10 of 10
Sort by

Dissertation
Optimizing Air Cargo load planning
Authors: --- --- --- ---
Year: 2016 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

Major changes appeared in the air cargo transportation industry during these last years. On the one hand, manufacturing companies have adopted new procurement strategies. These strategies impose that the goods transportation is realized in a fast and efficient way. On the other hand, the emergence of “low-cost” airlines increases the level of competition in this sector. Airlines are now looking for optimizing the loading of their aircrafts to meet their customers’ expectations in terms of efficiency, but also to cut in their expenses to face this high level of competition.
In order to reach these two objectives, airlines put pressure on aviation-handling companies that are in charge of preparing aircraft loading. Nowadays, these companies face difficulties to optimize the air cargo load planning mainly due to the complexity of this task. Actually, people in charge of load planning have to do it manually. Seeing the large number of constraints that have to be fulfilled to approve a load plan, they are only able to offer safe flights and not efficient ones.
In this matter, the goal of this project-dissertation is to analyse the possible advantages that an auto-load software can offer to aviation-handling companies, and more specifically to AviaPartner. The solution developed by the Centre for Quantitative methods and Operations Management from HEC-ULg (OPAL - Optimized Planning for Aircraft Loading) has been tested in the framework of the historical data available at AviaPartner Liege.
The findings showed that major economic savings can be realized by using this type of software. Firstly, the preparation time needed to create the load plan of a commercial aircraft is decreased from about 30 minutes to 5 minutes. Secondly, the fuel consumption is diminished since the aerodynamic performances are improved thanks to a better position of the centre of gravity of the aircraft. Finally, in case of multi-destination flights, handling operations at intermediate airports are reduced due to better location of the different containers inside the aircraft. These three major savings can be translated into costs reduction for airlines as a result of more efficient flights.


Book
Statica
Author:
ISBN: 9789043017367 Year: 2010 Publisher: Amsterdam Pearson Education

Loading...
Export citation

Choose an application

Bookmark

Abstract

Statica is een standaardwerk waarin dit onderwerp wordt behandeld. De principes van de statica worden toegepast op situaties die aanvankelijk eenvoudig zijn en vervolgens steeds ingewikkelder worden. Statica bevat didactische kwaliteiten waar Russel C. Hibbeler beroemd om is binnen het vakgebied. In deze twaalfde editie zijn honderden nieuwe vraagstukken en illustraties toegevoegd. De theorie is aangevuld met talloze praktische voorbeelden en met aansprekende en fraai geïllustreerde vraagstukken. Didactische kenmerken: - Veel verschillende soorten vraagstukken uit diverse technische disciplines waarbij de nadruk ligt op situaties uit de beroepspraktijk; - Analyseprocedures die een logische werkwijze bieden voor de toepassing van de theorie en voor de ontwikkeling van probleemoplossende vaardigheden; - Voorbeelden die de toepassing van de theorie op de praktijk illustreren. De voorbeelden geven de probleemoplossende strategieën weer die in de bijbehorende analyseprocedures zijn besproken; - Afbeeldingen die het boek aantrekkelijker en duidelijker maken voor visueel ingestelde studenten.


Book
Quantum fluctuations
Author:
ISBN: 0691218021 Year: 1985 Publisher: Princeton, New Jersey : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Stochastic mechanics is a description of quantum phenomena in classical probabilistic terms. This work contains a detailed account of the kinematics of diffusion processes, including diffusions on curved manifolds which are necessary for the treatment of spin in stochastic mechanics. The dynamical equations of the theory are derived from a variational principle, and interference, the asymptotics of free motion, bound states, statistics, and spin are described in classical terms. In addition to developing the formal mathematical aspects of the theory, the book contains discussion of possible physical causes of quantum fluctuations in terms of an interaction with a background field. The author gives a critical analysis of stochastic mechanics as a candidate for a realistic theory of physical processes, discussing measurement, local causality in the sense of Bell, and the failure of the theory in its present form to satisfy locality.


Book
Fluid Mechanics of Plankton
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The cooperation between plankton biologists and fluid dynamists has enhanced our knowledge of life within the plankton communities in ponds, lakes, and seas. This book assembled contributions on plankton–flow interactions, with an emphasis on syntheses and/or predictions. However, a wide range of novel insights, reasonable scenarios, and founded critiques are also considered in this book.


Book
Fluid Mechanics of Plankton
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The cooperation between plankton biologists and fluid dynamists has enhanced our knowledge of life within the plankton communities in ponds, lakes, and seas. This book assembled contributions on plankton–flow interactions, with an emphasis on syntheses and/or predictions. However, a wide range of novel insights, reasonable scenarios, and founded critiques are also considered in this book.


Book
Fluid Mechanics of Plankton
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The cooperation between plankton biologists and fluid dynamists has enhanced our knowledge of life within the plankton communities in ponds, lakes, and seas. This book assembled contributions on plankton–flow interactions, with an emphasis on syntheses and/or predictions. However, a wide range of novel insights, reasonable scenarios, and founded critiques are also considered in this book.

Keywords

Research & information: general --- white sea --- arctic ocean --- net tow --- turbulence avoidance --- feeding mode --- National Centers for Environmental Information --- European Centre for Medium-Range Weather Forecasts --- plankton --- turbulence --- data analysis --- copepod --- numerical simulation --- immersed boundary method --- multi-scale simulations --- form-function relation --- Kolmogorov --- chemosensory --- signaling --- zooplankton --- jellyfish --- hydrodynamics --- escape behavior --- Acartia tonsa --- copepods --- cruising --- escape swimming --- kinematics --- power --- cost of transport --- locomotion --- reorientation --- swimming microorganism --- nutrient patchiness --- phytoplankton --- surge uptake --- nutrient depletion --- turbulent history --- microplastics --- swimming behavior --- imaging --- Temora turbinata --- propulsion --- rotational physics --- convergent evolution --- torque --- moment of inertia --- animal movement --- plankton jumping --- impulsively generated viscous vortex ring --- impulsive Stokeslet --- impulsive stresslet --- elastic collision --- Froude propulsion efficiency --- added mass coefficient --- white sea --- arctic ocean --- net tow --- turbulence avoidance --- feeding mode --- National Centers for Environmental Information --- European Centre for Medium-Range Weather Forecasts --- plankton --- turbulence --- data analysis --- copepod --- numerical simulation --- immersed boundary method --- multi-scale simulations --- form-function relation --- Kolmogorov --- chemosensory --- signaling --- zooplankton --- jellyfish --- hydrodynamics --- escape behavior --- Acartia tonsa --- copepods --- cruising --- escape swimming --- kinematics --- power --- cost of transport --- locomotion --- reorientation --- swimming microorganism --- nutrient patchiness --- phytoplankton --- surge uptake --- nutrient depletion --- turbulent history --- microplastics --- swimming behavior --- imaging --- Temora turbinata --- propulsion --- rotational physics --- convergent evolution --- torque --- moment of inertia --- animal movement --- plankton jumping --- impulsively generated viscous vortex ring --- impulsive Stokeslet --- impulsive stresslet --- elastic collision --- Froude propulsion efficiency --- added mass coefficient

Impulsive and hybrid dynamical systems
Authors: --- ---
ISBN: 1400865247 9781400865246 9780691127156 0691127158 Year: 2006 Publisher: Princeton, New Jersey Oxfordshire, England

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book develops a general analysis and synthesis framework for impulsive and hybrid dynamical systems. Such a framework is imperative for modern complex engineering systems that involve interacting continuous-time and discrete-time dynamics with multiple modes of operation that place stringent demands on controller design and require implementation of increasing complexity--whether advanced high-performance tactical fighter aircraft and space vehicles, variable-cycle gas turbine engines, or air and ground transportation systems. Impulsive and Hybrid Dynamical Systems goes beyond similar treatments by developing invariant set stability theorems, partial stability, Lagrange stability, boundedness, ultimate boundedness, dissipativity theory, vector dissipativity theory, energy-based hybrid control, optimal control, disturbance rejection control, and robust control for nonlinear impulsive and hybrid dynamical systems. A major contribution to mathematical system theory and control system theory, this book is written from a system-theoretic point of view with the highest standards of exposition and rigor. It is intended for graduate students, researchers, and practitioners of engineering and applied mathematics as well as computer scientists, physicists, and other scientists who seek a fundamental understanding of the rich dynamical behavior of impulsive and hybrid dynamical systems.

Keywords

Automatic control. --- Control theory. --- Dynamics. --- Discrete-time systems. --- Dynamical systems --- Kinetics --- Mathematics --- Mechanics, Analytic --- Force and energy --- Mechanics --- Physics --- Statics --- Dynamics --- Machine theory --- Control engineering --- Control equipment --- Control theory --- Engineering instruments --- Automation --- Programmable controllers --- DES (System analysis) --- Discrete event systems --- Sampled-data systems --- Digital control systems --- Discrete mathematics --- System analysis --- Linear time invariant systems --- Actuator. --- Adaptive control. --- Algorithm. --- Amplitude. --- Analog computer. --- Arbitrarily large. --- Asymptote. --- Asymptotic analysis. --- Axiom. --- Balance equation. --- Bode plot. --- Boundedness. --- Calculation. --- Center of mass (relativistic). --- Coefficient of restitution. --- Continuous function. --- Convex set. --- Differentiable function. --- Differential equation. --- Dissipation. --- Dissipative system. --- Dynamical system. --- Dynamical systems theory. --- Energy. --- Equations of motion. --- Equilibrium point. --- Escapement. --- Euler–Lagrange equation. --- Exponential stability. --- Forms of energy. --- Hamiltonian mechanics. --- Hamiltonian system. --- Hermitian matrix. --- Hooke's law. --- Hybrid system. --- Identity matrix. --- Inequality (mathematics). --- Infimum and supremum. --- Initial condition. --- Instability. --- Interconnection. --- Invariance theorem. --- Isolated system. --- Iterative method. --- Jacobian matrix and determinant. --- Lagrangian (field theory). --- Lagrangian system. --- Lagrangian. --- Likelihood-ratio test. --- Limit cycle. --- Limit set. --- Linear function. --- Linearization. --- Lipschitz continuity. --- Lyapunov function. --- Lyapunov stability. --- Mass balance. --- Mathematical optimization. --- Melting. --- Mixture. --- Moment of inertia. --- Momentum. --- Monotonic function. --- Negative feedback. --- Nonlinear programming. --- Nonlinear system. --- Nonnegative matrix. --- Optimal control. --- Ordinary differential equation. --- Orthant. --- Parameter. --- Partial differential equation. --- Passive dynamics. --- Poincaré conjecture. --- Potential energy. --- Proof mass. --- Quantity. --- Rate function. --- Requirement. --- Robust control. --- Second law of thermodynamics. --- Semi-infinite. --- Small-gain theorem. --- Special case. --- Spectral radius. --- Stability theory. --- State space. --- Stiffness. --- Supply (economics). --- Telecommunication. --- Theorem. --- Transpose. --- Uncertainty. --- Uniform boundedness. --- Uniqueness. --- Vector field. --- Vibration. --- Zeroth (software). --- Zeroth law of thermodynamics.


Book
The Mathematical Mechanic : Using Physical Reasoning to Solve Problems
Author:
ISBN: 0691244170 Year: 2022 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Everybody knows that mathematics is indispensable to physics--imagine where we'd be today if Einstein and Newton didn't have the math to back up their ideas. But how many people realize that physics can be used to produce many astonishing and strikingly elegant solutions in mathematics? Mark Levi shows how in this delightful book, treating readers to a host of entertaining problems and mind-bending puzzlers that will amuse and inspire their inner physicist.Levi turns math and physics upside down, revealing how physics can simplify proofs and lead to quicker solutions and new theorems, and how physical solutions can illustrate why results are true in ways lengthy mathematical calculations never can. Did you know it's possible to derive the Pythagorean theorem by spinning a fish tank filled with water? Or that soap film holds the key to determining the cheapest container for a given volume? Or that the line of best fit for a data set can be found using a mechanical contraption made from a rod and springs? Levi demonstrates how to use physical intuition to solve these and other fascinating math problems. More than half the problems can be tackled by anyone with precalculus and basic geometry, while the more challenging problems require some calculus. This one-of-a-kind book explains physics and math concepts where needed, and includes an informative appendix of physical principles.The Mathematical Mechanic will appeal to anyone interested in the little-known connections between mathematics and physics and how both endeavors relate to the world around us.

Keywords

Mathematical physics. --- Problem solving. --- MATHEMATICS / General. --- Methodology --- Psychology --- Decision making --- Executive functions (Neuropsychology) --- Physical mathematics --- Physics --- Mathematics --- Addition. --- Analytic function. --- Angular acceleration. --- Angular velocity. --- Axle. --- Calculation. --- Capacitor. --- Cartesian coordinate system. --- Cauchy's integral formula. --- Center of mass (relativistic). --- Center of mass. --- Centroid. --- Ceva's theorem. --- Clockwise. --- Complex analysis. --- Complex number. --- Conservation of energy. --- Convex curve. --- Curvature. --- Curve. --- Cylinder (geometry). --- Derivative. --- Diameter. --- Differential geometry. --- Dimension. --- Division by zero. --- Dot product. --- Eigenvalues and eigenvectors. --- Electric current. --- Equation. --- Euler's formula. --- Euler–Lagrange equation. --- Fermat's principle. --- Friction. --- Fundamental theorem of calculus. --- Gaussian curvature. --- Generating function. --- Geodesic curvature. --- Geometry. --- Gravity. --- Green's theorem. --- Heat flux. --- Hinge. --- Hooke's law. --- Horizontal plane. --- Hypotenuse. --- Inductance. --- Instant. --- Kinetic energy. --- Line integral. --- Linear map. --- Mathematics. --- Mechanics. --- Moment of inertia. --- Newton's laws of motion. --- Normal (geometry). --- Ohm's law. --- Optics. --- Partial derivative. --- Potential energy. --- Proportionality (mathematics). --- Pythagorean theorem. --- Quadratic function. --- Quantity. --- Rectangle. --- Resistor. --- Right angle. --- Right triangle. --- Second law of thermodynamics. --- Semicircle. --- Series and parallel circuits. --- Sign (mathematics). --- Slinky. --- Snell's law. --- Soap bubble. --- Soap film. --- Special case. --- Spring (device). --- Stiffness. --- Summation. --- Surface area. --- Surface tension. --- Tangent space. --- Tangent. --- Telescope. --- Theorem. --- Thought experiment. --- Tractrix. --- Trapezoid. --- Trigonometric functions. --- Two-dimensional gas. --- Uncertainty principle. --- Unit circle. --- Unit vector. --- Vacuum. --- Variable (mathematics). --- Vector field. --- Voltage drop. --- Voltage. --- Wavefront.


Book
Selected Problems in Fluid Flow and Heat Transfer
Author:
ISBN: 3039214284 3039214276 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fluid flow and heat transfer processes play an important role in many areas of science and engineering, from the planetary scale (e.g., influencing weather and climate) to the microscopic scales of enhancing heat transfer by the use of nanofluids; understood in the broadest possible sense, they also underpin the performance of many energy systems. This topical Special Issue of Energies is dedicated to the recent advances in this very broad field. This book will be of interest to readers not only in the fields of mechanical, aerospace, chemical, process and petroleum, energy, earth, civil ,and flow instrumentation engineering but, equally, biological and medical sciences, as well as physics and mathematics; that is, anywhere that “fluid flow and heat transfer” phenomena may play an important role or be a subject of worthy research pursuits.

Keywords

n/a --- thermal performance --- microbubble pump --- particle deposition --- flow oscillation --- orthogonal jet --- flat plate --- gas turbine engine --- air heater --- flow behavior --- transonic compressor --- friction factor --- nonlinear thermal radiation --- oscillators --- porous cavity --- POD --- turbulent flow --- thermosyphon --- turbulence --- mass transfer --- tip leakage flow --- capture efficiency --- pipe flow --- correlation --- decomposition dimensionalities --- heat transfer --- pressure loss --- CANDU-6 --- numerical modeling --- CFD --- magnetic field --- boundary layer --- two-phase flow --- heat transfer performance --- Colebrook-White --- computational burden --- phase change --- surrogate model --- Padé polynomials --- traveling-wave heat engine --- flow regime --- numerical simulation --- energetics --- ( A g ? F e 3 O 4 / H 2 O ) hybrid nanofluid --- pumps --- BEM --- SPIV --- acoustic streaming --- microbubbles --- Aspen® --- push-pull --- Positive Temperature Coefficient (PTC) elements --- iterative procedure --- transient analysis --- spiral fin-tube --- toxic gases --- unsteady heat release rate --- water hammer --- method of moment --- visualization --- superheated steam --- impingement heat transfer enhancement --- X-ray microtomography --- moderator --- wind turbine --- flow rate --- fin-tube --- flue gas --- actuator disc --- temperature distributions --- supercritical LNG --- sharp sections --- moment of inertia --- Colebrook equation --- pump efficiency --- tower --- OpenFOAM --- computational fluid dynamics --- chemical reaction --- pump performance --- logarithms --- numerical results --- downwind --- thermodynamic --- triaxial stress --- flow friction --- energy conversion --- entropy generation --- zigzag type --- inertance-compliance --- section aspect ratios --- laminar separation bubble --- axial piston pumps --- thermogravimetry --- pressure drop --- load resistances --- vortex breakdown --- T-section prism --- flow-induced motion --- centrifugal pump --- load --- vortex identification --- decomposition region --- condensation --- performance characteristics --- pipes --- detached-eddy simulation --- Computational Fluid Dynamics (CFD) simulation --- thermal cracking --- real vehicle experiments --- bubble size --- thermal energy recovery --- hydraulic resistances --- concentration --- tower shadow --- fire-spreading characteristics --- thermoacoustic electricity generator --- bubble generation --- multi-stage --- thermal effect --- ferrofluid --- PHWR --- fluidics --- multiphase flow --- printed circuit heat exchanger --- particle counter --- dew point temperature --- Padé polynomials

Listing 1 - 10 of 10
Sort by