Listing 1 - 10 of 10 |
Sort by
|
Choose an application
This book offers a comprehensive survey of the latest research concerning high-entropy alloy (HEA) superconductors, an emerging topic which has attracted significant attention since their discovery in 2014. HEAs represent a novel class of materials introduced in 2004, renowned for their exceptional mechanical attributes, robust resistance to corrosion, and remarkable thermal stability, among other characteristics. Superconductivity has emerged as a particularly prominent subject in this domain. Recent important findings are robust superconductivity under extraordinarily high pressure or ion irradiation, possible unconventional superconductivity, enhancement of bulk superconductivity, and high critical current density. In this book, HEA superconductors are classified into two primary categories: The first class encompasses alloy systems characterized by body-centered cubic and hexagonal close-packed structures; and the second class comprises intermetallic types. In each of these classes, the authors expound upon the exotic properties, applications, and materials design, aligning with the overarching themes of their work. This book delivers a topical and timely discussion of superconductivity associated with the high-entropy state, the potential applications under consideration, and the intricacies of materials design. These recent discoveries are poised to captivate many researchers in materials science, particularly those engaged in high-entropy alloys and the realm of superconducting properties and technology.
Superconductors --- Metals. --- Superconductivity. --- Superconductors. --- Metals and Alloys. --- Chemistry.
Choose an application
This book serves as an introduction to the growing field of quantum many-body transport in interacting nanojunctions. It delves into a theoretical approach based on a general density-matrix formulation for open quantum systems. In the book, relevant transport observables, like the current or its higher order cumulants, are obtained by evaluating quantum statistical averages. This approach requires the knowledge of the reduced density matrix of the interacting nanosystems. The formulation for addressing transport problems, based on the evolution of the reduced density operator in Liouville space, is highly versatile. It enables the treatment of charge and spin transport across various realistic nanostructures. Topics encompass standard Coulomb blockade, cotunneling phenomena in quantum dots, vibrational and Franck-Condon effects in molecular junctions, as well as many-body interference observed in double quantum dots or carbon nanotubes. Derived from lectures tailored for graduate and advanced students at the University of Regensburg in Germany, this book is enriched with exercises and step-by-step derivations.
Condensed matter. --- Quantum physics. --- Statistical Physics. --- Quantum dots. --- Superconductors --- Condensed Matter Physics. --- Quantum Physics. --- Quantum Dots. --- Superconductors. --- Chemistry. --- Quantum theory.
Choose an application
This book offers a roadmap to the future, addressing pressing challenges such as energy sustainability, environmental preservation, and advancements in biotechnology and pharmaceuticals. From the exploration of novel perovskite materials for environmental NO reduction to the development of game-changing biotechnological strategies for simultaneous CO2 capture and H2S conversion, this book spans a diverse range of topics. The content dives into the realms of artificial intelligence, nanotechnology, and state-of-the-art photovoltaic solar cells. The chapters explore the potential of psychedelic substances for treating mental disorders and the use of computational tools in pesticide development. Moreover, the reader can uncover the secrets of copaiba tree oil-resin active ingredients with multifaceted medicinal properties and the application of electrical current in alcoholic fermentation. With contributions from esteemed researchers, this book offers insights into the forefront of scientific progress.
Decision making. --- Management science. --- Operations research. --- Perovskite. --- Catalysis. --- Materials. --- Fuel cells. --- Superconductors --- Photocatalysis. --- Quantum dots. --- Perovskites. --- Catalytic Materials. --- Fuel Cells. --- Superconductors. --- Quantum Dots. --- Chemistry.
Choose an application
This book elucidates fascinating electronic phenomena of unusual Bi2-square net in layered R2O2Bi (R: rare earth) compounds using two approaches: the fabrication of epitaxial thin films and the synthesis of bulk polycrystalline powders. The Bi2-square net compounds are a promising platform to explore exotic physical properties originating from the interplay between a two-dimensional electronic state and strong spin–orbit coupling; however, there are few reports on Bi2-square net compounds due to the instability of unusual electronic configurations. The book presents the development of synthetic routes for R2O2Bi compounds, such as novel solid phase epitaxy techniques and chemical control of crystal structure, demonstrating the intrinsic physical properties of Bi2-square net for the first time. The most notable finding is the successful induction of two-dimensional superconductivity in Bi2-square net with the coexistence of rich electronic phases. The book also discusses the superconducting mechanisms and the effect of R cation substitution in detail and describes the mechanical properties of Bi2-square net. These findings overturn the results of previous studies of R2O2Bi. The book sheds light on hidden layered compounds, representing a significant advance in the field.
Inorganic chemistry. --- Superconductivity. --- Superconductors. --- Optical materials. --- Physical chemistry. --- Inorganic Chemistry. --- Optical Materials. --- Physical Chemistry.
Choose an application
This book presents experimental studies of nonequilibrium phase transitions induced by ac and dc forces in collectively interacting systems—a superconducting vortex system with random pinning. It first shows that a phase transition from reversible to irreversible flow occurs by increasing vortex density as well as amplitude of ac shear, which is indicative of the universality of the reversible-irreversible transition. Two distinct flow regimes are also found in the reversible phase. Next, the book presents new methods for dc driven experiments—transverse mode-locking and transverse current-voltage measurements—and provides convincing evidence of the second-order dynamical transition from disordered plastic to anisotropically ordered smectic flow. Lastly it reports on the first experimental demonstration of the Kibble-Zurek mechanism for the nonequilibrium phase transition. The experimental results indicate that both the reversible-irreversible transition and the dynamical ordering transition belong to the directed percolation universality class which is one of the fundamental classes of nonequilibrium phase transitions. Hence, the findings will be generalized to other nonequilibrium systems and stimulate research on nonequilibrium physics.
Low temperatures. --- Condensed matter. --- Superconductivity. --- Superconductors. --- Statistical Physics. --- Low Temperature Physics. --- Phase Transition and Critical Phenomena.
Choose an application
High efficiency, large scale, stationary computing systems – supercomputers and data centers – are becoming increasingly important due to the movement of data storage and processing onto remote cloud servers. This book is dedicated to a technology particularly appropriate for this application – superconductive electronics, in particular, rapid single flux quantum circuits. The primary purpose of this book is to introduce and systematize recent developments in superconductive electronics into a cohesive whole to support the further development of large scale computing systems. A brief background into the physics of superconductivity and the operation of common superconductive devices is provided, followed by an introduction into different superconductive logic families, including the logic gates, interconnect, and bias current distribution. Synchronization, fabrication, and electronic design automation methodologies are presented, reviewing both widely established concepts and techniques as well as recent approaches. Issues related to memory, synchronization, interconnects, coupling noise, bias networks, signal interfaces, and deep scaling of superconductive structures and design for testability are described, and models, expressions, circuits, algorithms, and design methodologies are discussed and placed in context. The aim of this book is to provide insight and engineering intuition into the design of large scale digital superconductive circuits and systems. Reviews modern research in the field of superconductive digital electronics, including novel devices and approaches; Provides comprehensive background on pertinent topics; Describes prospective methodologies for large scale integration of superconductive circuits.
Choose an application
This book provides an insight into spin-triplet superconductivity, which rapidly becomes better understood in recent years, from the perspective of a microscopic measurement technique called nuclear magnetic resonance (NMR). The compound UTe2, the target material of this book, was confirmed to show superconductivity in 2018, and its peculiarity is very similar to that of other uranium-based ferromagnetic superconductors, ensuring spin triplet superconductivity. This book begins with the fundamentals of superconductivity and subsequently overviews research in spin-triplet superconductivity. The similarity between the high-field superconducting phase in UTe2 and the superconducting phase under pressure is particularly interesting among the various superconducting phenomena observed so far. This book provides a concise introduction to superconductivity, so that the book is also intended for wide readership including the beginners interested in the phenomenon of superconductivity and undergraduate and graduate students. It also cover the NMR measurement from the basic derivation, which is accessible for beginners. The target material UTe2 is skillfully described, including a selection of related works to this book.
Superconductivity. --- Superconductors. --- Nuclear magnetic resonance. --- Condensed matter. --- Materials --- Magnetic Resonance (NMR, EPR). --- Strongly Correlated Systems. --- Characterization and Analytical Technique. --- Analysis.
Choose an application
The book explores the properties and behaviors of high-critical-temperature superconductors in the yttrium barium copper oxide (YBCO) system, looking specifically at Y0.5Ln0.5BaSrCu3O6+z compounds, where Ln represents rare earth elements like europium (Eu), samarium (Sm), and (neodymium) Nd. Structured into several chapters, it navigates through key aspects of superconductivity and its characterization. Starting with an introduction to the discovery of high-critical-temperature superconductors and their far-reaching applications, it sheds light on unresolved questions in materials physics, particularly concerning the behavior of the copper(II)-oxide (CuO2) planes and the introduction of additional electronic holes. Emphasizing the pivotal role of the CuO2 planes in shaping material properties above the critical temperature, it also delves into the history of superconductivity, properties of superconducting materials, and various types of superconductors. Phenomenological theories like the London theory, Ginzburg-Landau theory, and Abrikosov's theory of the mixed state in type II superconductors are discussed, along with conventional theories such as the BCS theory and Josephson junctions. The book provides an overview of experimental techniques used to characterize structural, magnetic, and electrical properties of superconductor compounds, including X-ray diffraction, scanning electron microscopy, and magnetometry. Focusing on the structural, magnetic, and electrical properties of Y0.5Ln0.5BaSrCu3O6+z compounds, along with the effects of substitutions and thermal treatments, the book aims to achieve several objectives. These include a comparative study of superconducting and structural properties under various thermal treatments and isovalent substitutions, analysis of magnetic susceptibility and electrical resistivity as functions of temperature, investigation of the evolution of mixed-state properties with changing temperatures, and utilization of the Rietveld crystallographic refinement method to establish correlations between interatomic distances and critical temperatures. Additionally, the book presents the synthesis of studied compounds through solid-state reactions and subsequent thermal treatments, including annealing under oxygen and argon atmospheres. The results of these treatments are discussed in relation to improvements in irreversibility lines, magnetic shielding, and grain quality.
Superconductivity. --- Superconductors. --- Condensed matter. --- Magnetism. --- Semiconductors. --- Materials --- Mathematical physics. --- Condensed Matter Physics. --- Materials Characterization Technique. --- Theoretical, Mathematical and Computational Physics. --- Analysis.
Choose an application
This thesis demonstrates the value of theoretical approaches in the discovery of new superconducting materials. It reports a detailed study of the recently discovered nickel-oxide (nickelate) superconductors using multiple first-principles computational tools, from density functional theory to dynamical mean field theory. In the context of superconductivity, discoveries have generally been linked to serendipitous experimental discovery; this thesis reports some of the few examples of predictions of new superconductors that have later been realized in practice, a prime example of the significance of the methodology it expounds. Overall, it represents a seminal systematic work in the electronic structure theory of the emergent field of nickelate superconductivity.
Superconductivity. --- Superconductors. --- Condensed matter. --- Materials science --- Electronic structure. --- Quantum chemistry --- Solid state physics. --- Mathematical physics. --- Computer simulation. --- Structure of Condensed Matter. --- Electronic Structure Calculations. --- Electronic Devices. --- Computational Physics and Simulations. --- Data processing. --- Computer programs.
Choose an application
This book presents experimental studies of nonequilibrium phase transitions induced by ac and dc forces in collectively interacting systems—a superconducting vortex system with random pinning. It first shows that a phase transition from reversible to irreversible flow occurs by increasing vortex density as well as amplitude of ac shear, which is indicative of the universality of the reversible-irreversible transition. Two distinct flow regimes are also found in the reversible phase. Next, the book presents new methods for dc driven experiments—transverse mode-locking and transverse current-voltage measurements—and provides convincing evidence of the second-order dynamical transition from disordered plastic to anisotropically ordered smectic flow. Lastly it reports on the first experimental demonstration of the Kibble-Zurek mechanism for the nonequilibrium phase transition. The experimental results indicate that both the reversible-irreversible transition and the dynamical ordering transition belong to the directed percolation universality class which is one of the fundamental classes of nonequilibrium phase transitions. Hence, the findings will be generalized to other nonequilibrium systems and stimulate research on nonequilibrium physics.
Statistical physics --- Thermodynamics --- Thermal properties of solids --- Solid state physics --- Physics --- supergeleiding --- koude --- statistiek --- fysica --- Low temperatures. --- Condensed matter. --- Superconductivity. --- Superconductors. --- Statistical Physics. --- Low Temperature Physics. --- Phase Transition and Critical Phenomena.
Listing 1 - 10 of 10 |
Sort by
|