Listing 1 - 7 of 7 |
Sort by
|
Choose an application
Les batteries lithium fer phosphate (LiFePO4 ou LFP) sont largement utilisées dans les véhicules électriques, les véhicules électriques hybrides, les équipements électroniques et d’autres appareils de stockage d’énergie. Ce large éventail d’applications est dû aux caractéristiques spécifiques de la technologie LFP : faible coût, capacité de puissance élevée, longue durée de vie, faible toxicité, grande stabilité thermique, énergie de stockage prolongée, recharge rapide et haute réversibilité. Ces performances électrochimiques exceptionnelles ont contribué à la croissance fulgurante de la demande et de la production de la chimie LFP sur le marché des batteries. Cependant, ceci constitue une problématique majeure tant sur le plan environnemental qu’économique. En effet, d’une part, dans un futur proche, le nombre de batteries LFP en fin de vie explosera et si ces dernières sont directement mises en décharge ou traitées de manière inappropriée, cela constituera un sérieux danger pour le système écologique et la santé humaine : les substances toxiques (matières organiques, métaux lourds, plastiques, etc.) peuvent être solubilisées et transférées dans le sol et les eaux souterraines. D’autre part, le lithium, élément majeur des batteries LFP, est une ressource naturelle abondante, mais son extraction a lieu dans une minorité de pays et celle-ci souffre de l’inconsistance de la qualité des minerais et de coûts élevés : l’approvisionnement de ce dernier est donc risqué. Par conséquent, le recyclage est un moyen efficace pour protéger l’environnement et réduire les risques de pénurie des ressources de manière circulaire. Dans ce sens, ce travail propose la récupération de Li, Fe et P à partir d’une poudre de Black Mass (BM) LFP contaminée par de l’aluminium (Al), du cuivre (Cu) et d’autres éléments mineurs ou en traces. Pour ce faire, deux grandes phases de traitement successives ont été employées : une lixiviation acide non-sélective en absence d’oxydant/réducteur suivie d’étapes d’oxydation/précipitation. La première phase a consisté à dissoudre tous les métaux d’intérêt en utilisant de l’acide sulfurique (H2SO4) ou de l’acide phosphorique (H3PO4). A l’issu des différents essais, il a été trouvé que les rendements obtenus via la voie H2SO4 étaient les meilleurs. Sous les conditions optimales (1.05 M H2SO4, T = 22°C, P = 1 bar, [Kg/Kg] = 20 wt%, t = 120 mins, V = 450 rpm), des taux de dissolution de 90% de Li, 85% de Fe et 86% de P ont pu être atteints. Subséquemment, dans un premier temps, la phase d’oxydation/précipitation a permis de recueillir autour d’un pH 2, 99% du fer dissout sous forme de FePO4 a posteriori, en ajoutant successivement du peroxyde d’hydrogène (8 mL H2O2/200 g BM) comme oxydant et de l’hydroxyde de sodium (260 mL NaOH/200 g BM) comme agent de précipitation. Dans un second temps, Al et Cu ont pu être précipités autour d’un pH 9 sous les formes AlPO4 et Cu3(PO4)2 a posteriori, respectivement, en deux étapes successives : ajout de 35 mL NaOH/200 g BM + évaporation à 70°C pendant environ 3h ; et ajout de phosphate de sodium (100 mL Na3PO4/200g BM). Enfin, 51% du lithium dissout ont pu être récupérés autour d’un pH 12.5 sous forme de Li3PO4 a posteriori, en introduisant 930 mL Na3PO4/200g BM et en chauffant le mélange (filtrat + Na3PO4) à 70°C pendant 3h.
Choose an application
Kate a 21 ans et vit en Nouvelle-Écosse, au Canada. Pour pouvoir rembourser son prêt étudiant, elle se rend à des milliers de kilomètres de chez elle, dans l'Alberta, et travaille pour différentes compagnies qui exploitent les sables bitumineux afin d'en extraire le pétrole. Kate découvre alors un monde hypermasculin et hostile, où elle peine autant à nouer des amitiés qu'à simplement exprimer ce quelle ressent. Souvent isolée, victime d'un harcèlement constant, la jeune femme tente malgré tout de rester du côté de l'empathie et de l'humour pour décrire un système éprouvant et complexe, qui exploite aussi froidement les ressources naturelles que les êtres humains.
Natural resources --- Sexism. --- Extractivisme. --- Sexisme. --- Management. --- Pétrole -- Alberta (Canada) --- Sables bitumineux -- Alberta (Canada) --- Bandes dessinées autobiographiques
Choose an application
Heavy oil including extra heavy oil and tar sand bitumen, collectively referred to as viscous oil, exhibit a wide range of physical properties. Numerous tests have been (and continue to be) developed to provide an indication of the means by which viscous oil should be processed. Furthermore, proper interpretation of the data resulting from the inspection of heavy oil requires an understanding of the significance of the analytical data. The need for the application of analytical techniques has increased over the past three decades because of the change in feedstock composition through the inclusion of viscous oil as a refinery feedstock. This has arisen because of the increased amounts of the heavier feedstocks that are now used to produce liquid products. Prior to the energy crises of the 1970s, the heavier feedstocks were shunned as sources of liquid fuels and were used to produce asphalt. Now these feedstocks have increased in value as sources of liquid fuels. The acceptance of these heavier feedstocks by refineries has meant that the analytical techniques used for the lighter feedstocks have had to evolve to produce meaningful data that can be employed to assist in defining refinery scenarios for processing the feedstocks. In addition, selection of the most appropriate analytical procedures will aid in the predictability of feedstock behavior during refining.
Heavy oil. --- Analytical chemistry. --- Corps gras. --- Pétrole. --- Hydrocarbures. --- Chimie analytique. --- Testing --- Heavy oil --- Pétrole.
Choose an application
Dams are used worldwide for the purpose of water management. In this thesis we naturalized the discharge of the Vesdre (Belgium) at the location of the dam in order to quantify the storage effect of the Vesdre reservoir. This research does not study the influence of the water flow diversion from the river Helle towards the dam, its contribution is still included in the naturalized discharge. First, we compute the total inflow into the reservoir for which the contributing parts are the Helle tunnel, the Getzbach river, the upstream of the Vesdre river, and the portion of the reservoir water catchment that is drained but ungauged. This total inflow discharge is considered the natural discharge of the Vesdre. Then the outflow discharge from the Vesdre dam is computed based on a mass balance equation. These discharges were computed for the period of January 1995 to April 2022. 18 flood events were distinguished from the total inflow time series. For these 18 events, the inflow and outflow discharge were compared. The main findings are: that the dam reduces the peak head discharge by 14 to 85\%, the dam is able to shift the peak discharge by 5 to 69 hours, the dam is able to reduce the flood volume by 2 to 83\%. A flood frequency analysis was also applied on these data, and shows that the dam reduces the magnitude of flood peaks by a factor of two. This last result does not apply when the reservoir is saturated due to extreme flood events. The extreme flood event of July 2021 was not studied due to the unreliability of the data.
Choose an application
"This book argues that the 1970s energy crisis in the United States fostered the rise of neoliberalism in the United States by cultivating speculative discourses about energy that ultimately supported free market values expressed in trade and energy policies by the early 1980s. The book's interdisciplinary approach broadens the historiography of the energy crisis to consider the concepts, meanings, affects, and practices that comprised it, providing deeper context for the policy and geopolitical concerns that other scholars explore"--
Energy policy --- Energy policy. --- Neoliberalism --- Neoliberalism. --- Néo-libéralisme --- Petroleum reserves --- Politique énergétique --- Pétrole --- History --- Political aspects --- Histoire --- Réserves --- Aspect politique --- 1900-1999. --- United States.
Choose an application
Comparative law --- Droit comparé --- Petroleum law and legislation. --- Pétrole --- Natural gas --- Gaz naturel --- Power resources --- Ressources énergétiques --- Energy industries --- Industries énergétiques --- Droit --- Law and legislation. --- Droit --- Law and legislation --- Droit --- Law and legislation. --- Droit
Choose an application
Due to its high consumption and unequal distribution of primary lithium resources such as minerals and brines, lithium, a key component in LIBs, is experiencing an economic and supply crisis. Thus, it has been added to the EU critical raw material list since 2020. And a target of 50% lithium recycling from LIBs is set by the end of 2027 in Directive 2006/66/EC. This research aims to develop an economical and environmentally friendly process for recycling lithium from the leachate after LIB recycling. It will benefit in meeting the EU lithium recycling target, industrial growth, sustainability in the lithium value chain, the circular economy, and industrial wastewater regulations. In the methodology, crystallization experiments were carried out by cooling the Li solution at 1 °C for 20 to 48 hours to remove Na impurities. Moreover, chemical precipitation experiments were conducted to precipitate Li2CO3. The pH of the solution was adjusted with NaOH and heated to the desired temperature, followed by the saturated sodium carbonate addition. The reaction time was 60 minutes to reach equilibrium. The slurry was filtered, and the wet precipitates were heated at 100 °C for 1 hour. Moreover, the same methodology was applied to the solution with chloride chemistry after ion exchange resin. From the results, crystallization removed 49.67% Na from the Li solution in 20 hours. In chemical precipitation, temperature, pH value, Li concentration, and CO3/Li+ ratio are observed to be influential parameters on recovery and grade. The Li recovery of 80.91% with 96.40% Li2CO3 purity was obtained at 95 °C, CO3/Li+ 1.075, and 10.45 g/L Li concentration after crystallization. The purity can be improved to 99.56% by repulping precipitates with hot water with minimal loss of Li recovery and less than 0.42% Na content. On the other hand, the solution after ion exchange resin obtained 80.44% recovery at 70 °C, CO3/Li+ 1.0, and 8.32 g/L Li with 99.40% purity without repulping and 0.26% Na. Thus, the solution with less Na impurity and chloride chemistry needs less temperature to precipitate lithium carbonate. Nevertheless, during the economic analysis, the ion exchange resin phase appeared costly. As the elution step gives lithium concentration of 0.9 g/L, it requires a substantial amount of energy to concentrate lithium. Conversely, the experimental outcomes after the crystallization phase revealed cost-effectiveness and fewer energy requirements across the entire process. Consequently, an economically viable flowsheet for the targeted recovery of lithium as lithium carbonate from the leaching solution after the LIB recycling is formulated and presents a potential industrial proposition.
Lithium-Ion Batteries --- Recycling --- Hydrometallurgy --- Chemical Precipitation --- Crystallization --- Ion Exchange Resin --- Lithium Carbonate --- Sodium Carbonate --- Economic Analysis and Scale-Up --- Ingénierie, informatique & technologie > Géologie, ingénierie du pétrole & des mines
Listing 1 - 7 of 7 |
Sort by
|