Listing 1 - 5 of 5 |
Sort by
|
Choose an application
In recent years, special functions have been developed and applied in a variety of fields, such as combinatorics, astronomy, applied mathematics, physics, and engineering due to their remarkable properties. This volume expands our understanding of special functions by highlighting recent trends in numerical analysis. Interesting applications of special functions and partial differential equations are demonstrated by 15 chapters. Many chapters highlight the importance of numerical techniques and the results of complex analysis. Contributions in the book emphasize the mathematical treatment of questions arising in natural sciences and engineering, particularly those that involve novel problems and their solutions. This volume is a timely update for mathematicians and researchers interested in advanced numerical methods and computational techniques used to solve complex problems List of Chapters 1. Modified Adaptive Synchronization and Anti Synchronization method for Fractional order chaotic systems with uncertain parameters 2. Improved generalized differential transform method for a class of linear non homogeneous ordinary fractional differential equation 3. Incomplete K2-Function 4. Some Results On Incomplete Hypergeometric Functions 5. Transcendental Bernstein Series: Interpolation and Approximation 6. Some Sufficient Conditions For Uniform Convexity Of Normalized 1F2 Function 7. From Abel continuity theorem to Paley-Wiener theorem... 8. A New Class of Truncated Exponential-Gould-Hopper basedGenocchi Polynomials 9. Computational preconditioned Gauss-Seidel via half-sweep approximation to Caputo's time fractional differential equations 10. Krasnoselskii-type Theorems for Monotone Operators in Ordered Banach Algebra with Applications in Fractional Differential Equations and Inclusion 11. General fractional order quadratic functional integral equations: Existence, properties of solutions and some of its Applications 12.Nonlinear set-valued delay functional integral equations of Volterra-Stieltjes type: Existence of solutions, continuous dependence and applications 13.Certain Saigo Fractional Derivatives Of Extended Hypergeometric Functions 14. Some Erdelyi-kober Fractional Integrals Of The Extended Hypergeometric Functions 15. On solutions of Kinetic Model by Sumudu transform.
Choose an application
This book is a volume of the Springer Briefs in Mathematical Physics and serves as an introductory textbook on the theory of Macdonald polynomials. It is based on a series of online lectures given by the author at the Royal Institute of Technology (KTH), Stockholm, in February and March 2021. Macdonald polynomials are a class of symmetric orthogonal polynomials in many variables. They include important classes of special functions such as Schur functions and Hall–Littlewood polynomials and play important roles in various fields of mathematics and mathematical physics. After an overview of Schur functions, the author introduces Macdonald polynomials (of type A, in the GLn version) as eigenfunctions of a q-difference operator, called the Macdonald–Ruijsenaars operator, in the ring of symmetric polynomials. Starting from this definition, various remarkable properties of Macdonald polynomials are explained, such as orthogonality, evaluation formulas, and self-duality, with emphasis on the roles of commuting q-difference operators. The author also explains how Macdonald polynomials are formulated in the framework of affine Hecke algebras and q-Dunkl operators.
Mathematical physics. --- Special functions. --- Associative rings. --- Associative algebras. --- Mathematical Physics. --- Special Functions. --- Associative Rings and Algebras. --- Polinomis --- Functions, Special.
Choose an application
This book gives a comprehensive introduction to those parts of the theory of elliptic integrals and elliptic functions which provide illuminating examples in complex analysis, but which are not often covered in regular university courses. These examples form prototypes of major ideas in modern mathematics and were a driving force of the subject in the eighteenth and nineteenth centuries. In addition to giving an account of the main topics of the theory, the book also describes many applications, both in mathematics and in physics. For the reader’s convenience, all necessary preliminaries on basic notions such as Riemann surfaces are explained to a level sufficient to read the book. For each notion a clear motivation is given for its study, answering the question ‘Why do we consider such objects?’, and the theory is developed in a natural way that mirrors its historical development (e.g., ‘If there is such and such an object, then you would surely expect this one’). This feature sets this text apart from other books on the same theme, which are usually presented in a different order. Throughout, the concepts are augmented and clarified by numerous illustrations. Suitable for undergraduate and graduate students of mathematics, the book will also be of interest to researchers who are not familiar with elliptic functions and integrals, as well as math enthusiasts. .
Elliptic functions. --- Elliptic integrals --- Functions, Elliptic --- Integrals, Elliptic --- Transcendental functions --- Functions of complex variables --- Integrals, Hyperelliptic --- Special functions. --- Functions of complex variables. --- Mathematical physics. --- Special Functions. --- Functions of a Complex Variable. --- Mathematical Methods in Physics. --- Special functions --- Mathematical analysis --- Physical mathematics --- Physics --- Mathematics --- Complex variables --- Elliptic functions --- Functions of real variables --- Funcions el·líptiques --- Functions, Special.
Choose an application
More Explorations in Complex Functions is something of a sequel to GTM 287, Explorations in Complex Functions. Both texts introduce a variety of topics, from core material in the mainstream of complex analysis to tools that are widely used in other areas of mathematics and applications, but there is minimal overlap between the two books. The intended readership is the same, namely graduate students and researchers in complex analysis, independent readers, seminar attendees, or instructors for a second course in complex analysis. Instructors will appreciate the many options for constructing a second course that builds on a standard first course in complex analysis. Exercises complement the results throughout. There is more material in this present text than one could expect to cover in a year’s course in complex analysis. A mapping of dependence relations among chapters enables instructors and independent readers a choice of pathway to reading the text. Chapters 2, 4, 5, 7, and 8 contain the function theory background for some stochastic equations of current interest, such as SLE. The text begins with two introductory chapters to be used as a resource. Chapters 3 and 4 are stand-alone introductions to complex dynamics and to univalent function theory, including deBrange’s theorem, respectively. Chapters 5—7 may be treated as a unit that leads from harmonic functions to covering surfaces to the uniformization theorem and Fuchsian groups. Chapter 8 is a stand-alone treatment of quasiconformal mapping that paves the way for Chapter 9, an introduction to Teichmüller theory. The final chapters, 10–14, are largely stand-alone introductions to topics of both theoretical and applied interest: the Bergman kernel, theta functions and Jacobi inversion, Padé approximants and continued fractions, the Riemann—Hilbert problem and integral equations, and Darboux’s method for computing asymptotics.
Functions of complex variables. --- Special functions. --- Number theory. --- Functions of a Complex Variable. --- Special Functions. --- Number Theory. --- Number study --- Numbers, Theory of --- Algebra --- Special functions --- Mathematical analysis --- Complex variables --- Elliptic functions --- Functions of real variables --- Funcions de diverses variables complexes --- Functions, Special.
Choose an application
This book, the much-anticipated sequel to (Almost) Impossible, Integrals, Sums, and Series, presents a whole new collection of challenging problems and solutions that are not commonly found in classical textbooks. As in the author’s previous book, these fascinating mathematical problems are shown in new and engaging ways, and illustrate the connections between integrals, sums, and series, many of which involve zeta functions, harmonic series, polylogarithms, and various other special functions and constants. Throughout the book, the reader will find both classical and new problems, with numerous original problems and solutions coming from the personal research of the author. Classical problems are shown in a fresh light, with new, surprising or unconventional ways of obtaining the desired results devised by the author. This book is accessible to readers with a good knowledge of calculus, from undergraduate students to researchers. It will appeal to all mathematical puzzlers who love a good integral or series and aren’t afraid of a challenge.
Calculus, Integral --- Series --- Algebra --- Mathematics --- Processes, Infinite --- Sequences (Mathematics) --- Integral calculus --- Differential equations --- Sequences (Mathematics). --- Special functions. --- Number theory. --- Functions of real variables. --- Mathematical physics. --- Engineering mathematics. --- Sequences, Series, Summability. --- Special Functions. --- Number Theory. --- Real Functions. --- Mathematical Methods in Physics. --- Engineering Mathematics. --- Engineering --- Engineering analysis --- Mathematical analysis --- Physical mathematics --- Physics --- Real variables --- Functions of complex variables --- Number study --- Numbers, Theory of --- Special functions --- Mathematical sequences --- Numerical sequences --- Càlcul integral --- Successions (Matemàtica) --- Functions, Special.
Listing 1 - 5 of 5 |
Sort by
|