Narrow your search

Library

KBC (1)

UGent (1)

ULiège (1)


Resource type

book (3)


Language

English (3)


Year
From To Submit

2023 (3)

Listing 1 - 3 of 3
Sort by

Book
Machine Learning for Civil and Environmental Engineers : A Practical Approach to Data-Driven Analysis, Explainability, and Causality
Author:
ISBN: 1119897629 Year: 2023 Publisher: Hoboken, New Jersey : John Wiley & Sons, Inc.,

Loading...
Export citation

Choose an application

Bookmark

Abstract

"Synopsis: The theme of this textbook revolves around how machine learning (ML) can help civil and environmental engineers transform their domain. This textbook hopes to deliver the knowledge and information necessary to educate engineering students and practitioners on the principles of ML and how to integrate these into our field. This textbook is about navigating the realm of data-driven ML, explainable ML, and causal ML from the context of education, research, and practice. In hindsight, this textbook augments ML into the heart of engineering. Together, we will go over the big ideas behind ML. We will ask and answer questions such as, what is ML? Why is ML needed? How does ML differ from statistics, physical testing, and numerical simulation? Can we trust ML? And how can we benefit from ML, adapt to it, adopt it, wield it, and leverage it to overcome many, many of the problems that we may face? This book is also about showing you, my dear reader, how to amplify your engineering knowledge with a new tool. A tool that is yet to be formally taught in our curriculum. A tool that many civil and environmental engineering departments and schools may not fully appreciate ; yet are eager to know more about!"--


Book
Machine learning for civil & environmental engineers : a practical approach to data-driven analysis, explainability, and causality
Author:
ISBN: 9781119897606 Year: 2023 Publisher: Hoboken, New Jersey : Wiley,

Loading...
Export citation

Choose an application

Bookmark

Abstract

"Synopsis: The theme of this textbook revolves around how machine learning (ML) can help civil and environmental engineers transform their domain. This textbook hopes to deliver the knowledge and information necessary to educate engineering students and practitioners on the principles of ML and how to integrate these into our field. This textbook is about navigating the realm of data-driven ML, explainable ML, and causal ML from the context of education, research, and practice. In hindsight, this textbook augments ML into the heart of engineering. Together, we will go over the big ideas behind ML. We will ask and answer questions such as, what is ML? Why is ML needed? How does ML differ from statistics, physical testing, and numerical simulation? Can we trust ML? And how can we benefit from ML, adapt to it, adopt it, wield it, and leverage it to overcome many, many of the problems that we may face? This book is also about showing you, my dear reader, how to amplify your engineering knowledge with a new tool. A tool that is yet to be formally taught in our curriculum. A tool that many civil and environmental engineering departments and schools may not fully appreciate ; yet are eager to know more about!"


Book
Interpretable Machine Learning for the Analysis, Design, Assessment, and Informed Decision Making for Civil Infrastructure
Author:
ISBN: 0128240733 0128240741 Year: 2023 Publisher: San Diego Elsevier Science & Technology

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Listing 1 - 3 of 3
Sort by