Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Ocean wave power. --- Power, Ocean wave --- Wave power, Ocean --- Ocean energy resources --- Water-power
Choose an application
Wave energy offers a promising renewable energy source. This guide presents numerical modelling and optimisation methods for the development of wave energy converter technologies, from principles to applications. It covers oscillating water column technologies, theoretical wave power absorption, heaving point absorbers in single and multi-mode degrees of freedom, and the relatively hitherto unexplored topic of wave energy harvesting farms. It can be used as a specialist student textbook as well as a reference book for the design of wave energy harvesting systems, across a broad range of disciplines, including renewable energy, marine engineering, infrastructure engineering, hydrodynamics, ocean science, and mechatronics engineering. The Open Access version of this book, available at https://www.routledge.com/ has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license.
Renewable energy sources. --- Alternate energy sources --- Alternative energy sources --- Energy sources, Renewable --- Sustainable energy sources --- Power resources --- Renewable natural resources --- Agriculture and energy --- heaving point absorber --- Marine energy --- oscillating water column --- Renewable energy --- tidal energy --- Wave energy harvesting --- WEC --- wave energy conversion --- wave power absorption --- wave power farms
Choose an application
Technologies to harvest marine renewable energies (MREs) are at a pre-commercial stage, and significant R&D progress is still required in order to improve their competitiveness. Therefore, hybridization presents a significant potential, as it fosters synergies among the different harvesting technologies and resources. In the scope of this Special Issue, hybridization is understood in three different manners: (i) combination of technologies to harvest different MREs (e.g., wave energy converters combined with wind turbines); (ii) combination of different working principles to harvest the same resource (e.g., oscillating water column with an overtopping device to harvest wave energy); or (iii) integration of harvesting technologies in multifunctional platforms and structures (e.g., integration of wave energy converters in breakwaters). This Special Issue presents cutting-edge research on the development and testing of hybrid technologies for harvesting MREs and intends to inform interested readers on the most recent advances in this key topic.
vertical axisymmetric floaters --- arbitrary shape --- breakwater --- diffraction and radiation problem --- hydrodynamic characteristics --- added mass --- damping coefficient --- marine renewable energy --- wind energy --- solar energy --- resource assessment --- hybrid energy systems --- power take-off damping --- wave power device --- experimental testing --- PTO simulator --- uncertainty analysis --- wave energy testing --- experimental set-up --- calibration --- Computational Fluid Dynamics (CFD) modelling --- physical model testing --- Hybrid-Wave Energy Converter (HWEC) --- composite modelling approach --- Oscillating Water Column (OWC) --- Overtopping Device (OTD) --- multi-purpose breakwater --- wave power --- oscillating buoy --- power generation performance --- standing waves --- experimental research --- physical modelling --- wave energy --- breakwaters --- safety --- overtopping --- stability --- offshore wind energy --- CECO --- WindFloat Atlantic --- co-located wind–wave farm --- n/a --- co-located wind-wave farm
Choose an application
Technologies to harvest marine renewable energies (MREs) are at a pre-commercial stage, and significant R&D progress is still required in order to improve their competitiveness. Therefore, hybridization presents a significant potential, as it fosters synergies among the different harvesting technologies and resources. In the scope of this Special Issue, hybridization is understood in three different manners: (i) combination of technologies to harvest different MREs (e.g., wave energy converters combined with wind turbines); (ii) combination of different working principles to harvest the same resource (e.g., oscillating water column with an overtopping device to harvest wave energy); or (iii) integration of harvesting technologies in multifunctional platforms and structures (e.g., integration of wave energy converters in breakwaters). This Special Issue presents cutting-edge research on the development and testing of hybrid technologies for harvesting MREs and intends to inform interested readers on the most recent advances in this key topic.
Technology: general issues --- History of engineering & technology --- vertical axisymmetric floaters --- arbitrary shape --- breakwater --- diffraction and radiation problem --- hydrodynamic characteristics --- added mass --- damping coefficient --- marine renewable energy --- wind energy --- solar energy --- resource assessment --- hybrid energy systems --- power take-off damping --- wave power device --- experimental testing --- PTO simulator --- uncertainty analysis --- wave energy testing --- experimental set-up --- calibration --- Computational Fluid Dynamics (CFD) modelling --- physical model testing --- Hybrid-Wave Energy Converter (HWEC) --- composite modelling approach --- Oscillating Water Column (OWC) --- Overtopping Device (OTD) --- multi-purpose breakwater --- wave power --- oscillating buoy --- power generation performance --- standing waves --- experimental research --- physical modelling --- wave energy --- breakwaters --- safety --- overtopping --- stability --- offshore wind energy --- CECO --- WindFloat Atlantic --- co-located wind-wave farm
Choose an application
Technologies to harvest marine renewable energies (MREs) are at a pre-commercial stage, and significant R&D progress is still required in order to improve their competitiveness. Therefore, hybridization presents a significant potential, as it fosters synergies among the different harvesting technologies and resources. In the scope of this Special Issue, hybridization is understood in three different manners: (i) combination of technologies to harvest different MREs (e.g., wave energy converters combined with wind turbines); (ii) combination of different working principles to harvest the same resource (e.g., oscillating water column with an overtopping device to harvest wave energy); or (iii) integration of harvesting technologies in multifunctional platforms and structures (e.g., integration of wave energy converters in breakwaters). This Special Issue presents cutting-edge research on the development and testing of hybrid technologies for harvesting MREs and intends to inform interested readers on the most recent advances in this key topic.
Technology: general issues --- History of engineering & technology --- vertical axisymmetric floaters --- arbitrary shape --- breakwater --- diffraction and radiation problem --- hydrodynamic characteristics --- added mass --- damping coefficient --- marine renewable energy --- wind energy --- solar energy --- resource assessment --- hybrid energy systems --- power take-off damping --- wave power device --- experimental testing --- PTO simulator --- uncertainty analysis --- wave energy testing --- experimental set-up --- calibration --- Computational Fluid Dynamics (CFD) modelling --- physical model testing --- Hybrid-Wave Energy Converter (HWEC) --- composite modelling approach --- Oscillating Water Column (OWC) --- Overtopping Device (OTD) --- multi-purpose breakwater --- wave power --- oscillating buoy --- power generation performance --- standing waves --- experimental research --- physical modelling --- wave energy --- breakwaters --- safety --- overtopping --- stability --- offshore wind energy --- CECO --- WindFloat Atlantic --- co-located wind–wave farm --- n/a --- co-located wind-wave farm
Listing 1 - 5 of 5 |
Sort by
|