Listing 1 - 10 of 11 | << page >> |
Sort by
|
Choose an application
Nanophotonics has emerged as a multidisciplinary frontier of science and engineering. Due to its high potential to contribute to breakthroughs in many areas of technology, nanophotonics is capturing the interest of many researchers from different fields. This Special Issue of Applied Sciences on "Recent advances and future trends in nanophotonics" aims to give an overview on the latest developments in nanophotonics and its roles in different application domains. Topics of discussion include, but are not limited to, the exploration of new directions of nanophotonic science and technology that enable technological breakthroughs in high-impact areas mainly regarding diffraction elements, detection, imaging, spectroscopy, optical communications, and computing.
Choose an application
Nanophotonics has emerged as a multidisciplinary frontier of science and engineering. Due to its high potential to contribute to breakthroughs in many areas of technology, nanophotonics is capturing the interest of many researchers from different fields. This Special Issue of Applied Sciences on "Recent advances and future trends in nanophotonics" aims to give an overview on the latest developments in nanophotonics and its roles in different application domains. Topics of discussion include, but are not limited to, the exploration of new directions of nanophotonic science and technology that enable technological breakthroughs in high-impact areas mainly regarding diffraction elements, detection, imaging, spectroscopy, optical communications, and computing.
Choose an application
Nanophotonics has emerged as a multidisciplinary frontier of science and engineering. Due to its high potential to contribute to breakthroughs in many areas of technology, nanophotonics is capturing the interest of many researchers from different fields. This Special Issue of Applied Sciences on "Recent advances and future trends in nanophotonics" aims to give an overview on the latest developments in nanophotonics and its roles in different application domains. Topics of discussion include, but are not limited to, the exploration of new directions of nanophotonic science and technology that enable technological breakthroughs in high-impact areas mainly regarding diffraction elements, detection, imaging, spectroscopy, optical communications, and computing.
Choose an application
About this book This book features a collection of reviews focusing on interrelated topics in nano-optics and nanophononics written by some of the world's leading scientists in these fields. The book discusses recent results of numerical investigations of light-matter interactions at the nanoscale using first-principles calculations. Additionally, it reviews selected topics in the areas of nanophotonic devices based on functional nanoparticles for energy harvesting and the development of photo materials for advanced applications in optics and nanotechnologies. Finally, the book reviews the experimental development of quantum-dot single-photon sources on integrated photonic circuits and looks at applications in quantum information processing and quantum information distribution based on color center in diamond.
Optics. Quantum optics --- Electrical engineering --- nanotechniek --- optica --- Nanophotonics.
Choose an application
The aim of this textbook is to provide an overview of nanophotonics, a discipline which was developed around the turn of the millennium. This unique and rapidly evolving subject area is the result of a collaboration between various scientific communities working on different aspects of light-matter interaction at the nanoscale. These include near-field optics and super-resolution microscopy, photonic crystals, diffractive optics, plasmonics, optoelectronics, synthesis of metallic and semiconductor nanoparticles, two-dimensional materials, and metamaterials. The book is aimed at graduate students with a background in physics, electrical engineering, material science, or chemistry, as well as lecturers and researchers working within these fields.
Nanophotonics --- Nanophotonique --- Nano photonics --- Photonics --- 681.7-1/-9 --- 681.7-1/-9 Parts and details of optical instruments --- Parts and details of optical instruments --- Nanophotonics.
Choose an application
The investigation of light-matter interactions in materials, especially those on the nanoscale, represents perhaps the most promising avenue for scientific progress in the fields of photonics and plasmonics. This book examines a variety of topics, starting from fundamental principles, leading to the current state of the art research.
Nanoscience. --- Optics. --- Nanophotonics. --- Nano photonics --- Photonics --- Physics --- Light --- Nano science --- Nanoscale science --- Nanosciences --- Science
Choose an application
The investigation of light-matter interactions in materials, especially those on the nanoscale, represents perhaps the most promising avenue for scientific progress in the fields of photonics and plasmonics. This book examines a variety of topics, starting from fundamental principles, leading to the current state of the art research.
Nanoscience. --- Optics. --- Nanophotonics. --- Nano photonics --- Photonics --- Physics --- Light --- Nano science --- Nanoscale science --- Nanosciences --- Science
Choose an application
This book highlights the principles, research advances, and applications of plasmonic photocatalysis. As a new class of catalysts, plasmonic nanostructures with the unique ability to harvest solar energy across the entire visible spectrum and produce effective photocatalysis are viewed as a promising pathway for the energy crisis. Although plasmonic catalysis has been widely reported, the excitation mechanism and energy transfer pathway are still controversial. Meanwhile, the latest discovery of catalysis on nanomaterials is less reported. This book outlines the basics of plasmonic photocatalysis, including the electromagnetic properties of metal materials and surface plasmon, and discusses the catalytic mechanisms including the nearfield enhancements, hot electron, and thermal effects. In addition, the measurement methods and current advances on molecules and nanocrystals are presented in detail. Suitable for graduate students and researchers in physics, optics and optical engineering, and materials science, the book will deepen readers' understanding of the interaction between light and nanomaterials and expand their knowledge of the principles and applications of nanophotonics.
Plasma physics --- Applied physical engineering --- plasma --- plasmafysica --- Nanophotonics. --- Photocatalysis --- Plasma engineering. --- Materials.
Choose an application
This book gives a comprehensive overview of recent advancements in both theory and practical implementation of plasmonic probes. Encompassing multiple disciplines, the field of plasmonics provides a versatile and flexible platform for nanoscale sensing and imaging. Despite being a relatively young field, plasmonic probes have come a long way, with applications in chemical, biological, civil, and architectural fields as well as enabling many analytical schemes such as immunoassay, biomarkers, environmental indexing, and water quality sensing, to name but a few. The objective of the book is to present in-depth analysis of the theory and applications of novel probes based on plasmonics, with a broad selection of specially-invited chapters on the development, fabrication, functionalization, and implementation of plasmonic probes as well as their integration with current technologies and future outlook. This book is designed to cater to the needs of novice, seasoned researchers and practitioners in academia and industry, as well as medical and environmental fields.
Plasmonics. --- Probes (Electronic instruments) --- Detectors. --- Sensors --- Engineering instruments --- Physical instruments --- Electron probes --- Electronic probes --- Test probes --- Electronic apparatus and appliances --- Electronics --- Plasma engineering --- Testing --- Nanophotonics. --- Materials. --- Molecular probes. --- Materials --- Nanotechnology. --- Microfluidics. --- Nanophotonics and Plasmonics. --- Sensors and biosensors. --- Biological Sensors and Probes. --- Microscopy. --- Nanoengineering. --- Fluidics --- Nanofluids --- Molecular technology --- Nanoscale technology --- High technology --- Microscopy --- Bioprobes --- Probes, Molecular --- Molecular biology --- Affinity labeling --- Engineering --- Engineering materials --- Industrial materials --- Engineering design --- Manufacturing processes --- Nano photonics --- Photonics --- Technique
Choose an application
This book highlights cutting-edge research in surface plasmons, discussing the different types and providing a comprehensive overview of their applications. Surface plasmons (SPs) receive special attention in nanoscience and nanotechnology due to their unique optical, electrical, magnetic, and catalytic properties when operating at the nanoscale. The excitation of SPs in metal nanostructures enables the manipulation of light beyond the diffraction limit, which can be utilized for enhancing and tailoring light-matter interactions and developing ultra-compact high-performance nanophotonic devices for various applications. With clear and understandable illustrations, tables, and descriptions, this book provides physicists, materials scientists, chemists, engineers, and their students with a fundamental understanding of surface plasmons and device applications as a basis for future developments.
Nanophotonics. --- Plasmonics. --- Optical materials. --- Materials --- Optics --- Electronics --- Plasma engineering --- Photonics --- Nano photonics --- Nanotechnology. --- Surface plasmon resonance. --- Plasmon resonance, Surface --- Resonance, Surface plasmon --- Sensing, Surface plasmon resonance --- SPR (Surface plasmon resonance) --- Surface plasmon resonance sensing --- Biosensors --- Optical detectors --- Plasmons (Physics) --- Molecular technology --- Nanoscale technology --- High technology
Listing 1 - 10 of 11 | << page >> |
Sort by
|