Listing 1 - 5 of 5 |
Sort by
|
Choose an application
The kidney performs important functions in the human body and can inflict either acute kidney injury (AKI) or chronic kidney disease (CKD). AKI can be induced by kidney ischemia, drugs such as cisplatin, and heavy metals such as cadmium and arsenic. CKD can be induced by drugs, heavy metals, hypertension, and diabetes, as well as cancer. Importantly, nearly all kidney disorders have been shown to involve redox imbalance, reductive stress, oxidative stress, and mitochondrial abnormalities such as impaired mitochondrial homeostasis, including disrupted mitophagy and deranged mitochondrial unfolded protein responses. Understanding how these redox-related dysregulated pathways operate may give us new insights into how to design novel approaches to fighting kidney disease. This Special Issue of Biomolecules entitled “Redox imbalance and mitochondrial abnormalities in kidney disease” covers a variety of topics focusing on oxidative stress, mitochondrial dysfunction, and antioxidation enhancement implicated in kidney disease or kidney transplantation.
Medicine --- Pharmacology --- diabetic kidney disease --- caloric restriction --- NADH/NAD+ --- redox imbalance --- mitochondrial homeostasis --- mitophagy --- oxidative stress --- kidney allograft --- kidney rejection --- ischemia --- acute kidney injury (AKI) --- chronic kidney disease (CKD) --- tricarboxylic acid (TCA) cycle --- mitochondrial metabolism --- mitochondrial redox signaling --- mitochondrial proteins --- oxidative phosphorylation (OXPHOS) --- fatty acid (FA) β-oxidation --- mitochondrial dynamics --- biogenesis --- diabetes --- kidney --- mitochondria --- Oryza sativa --- rice husk --- TCA cycle metabolites --- kidney diseases --- renalase --- chronic kidney disease --- major adverse cardiovascular outcomes --- cadmium --- kidney injury --- renal toxicity --- oxidative damage --- proximal tubule --- controlled oxygenated rewarming --- mitochondrial uncoupling --- rewarming injury --- temperature paradox --- redox --- mitochondrial dysfunction --- SGLT2 --- mitochondrial reactive oxygen species --- Warburg effect --- podocytopathies --- mitochondrial oxidative stress --- reactive oxygen species (ROS) --- antioxidant defense --- cell death --- n/a
Choose an application
The kidney performs important functions in the human body and can inflict either acute kidney injury (AKI) or chronic kidney disease (CKD). AKI can be induced by kidney ischemia, drugs such as cisplatin, and heavy metals such as cadmium and arsenic. CKD can be induced by drugs, heavy metals, hypertension, and diabetes, as well as cancer. Importantly, nearly all kidney disorders have been shown to involve redox imbalance, reductive stress, oxidative stress, and mitochondrial abnormalities such as impaired mitochondrial homeostasis, including disrupted mitophagy and deranged mitochondrial unfolded protein responses. Understanding how these redox-related dysregulated pathways operate may give us new insights into how to design novel approaches to fighting kidney disease. This Special Issue of Biomolecules entitled “Redox imbalance and mitochondrial abnormalities in kidney disease” covers a variety of topics focusing on oxidative stress, mitochondrial dysfunction, and antioxidation enhancement implicated in kidney disease or kidney transplantation.
diabetic kidney disease --- caloric restriction --- NADH/NAD+ --- redox imbalance --- mitochondrial homeostasis --- mitophagy --- oxidative stress --- kidney allograft --- kidney rejection --- ischemia --- acute kidney injury (AKI) --- chronic kidney disease (CKD) --- tricarboxylic acid (TCA) cycle --- mitochondrial metabolism --- mitochondrial redox signaling --- mitochondrial proteins --- oxidative phosphorylation (OXPHOS) --- fatty acid (FA) β-oxidation --- mitochondrial dynamics --- biogenesis --- diabetes --- kidney --- mitochondria --- Oryza sativa --- rice husk --- TCA cycle metabolites --- kidney diseases --- renalase --- chronic kidney disease --- major adverse cardiovascular outcomes --- cadmium --- kidney injury --- renal toxicity --- oxidative damage --- proximal tubule --- controlled oxygenated rewarming --- mitochondrial uncoupling --- rewarming injury --- temperature paradox --- redox --- mitochondrial dysfunction --- SGLT2 --- mitochondrial reactive oxygen species --- Warburg effect --- podocytopathies --- mitochondrial oxidative stress --- reactive oxygen species (ROS) --- antioxidant defense --- cell death --- n/a
Choose an application
The kidney performs important functions in the human body and can inflict either acute kidney injury (AKI) or chronic kidney disease (CKD). AKI can be induced by kidney ischemia, drugs such as cisplatin, and heavy metals such as cadmium and arsenic. CKD can be induced by drugs, heavy metals, hypertension, and diabetes, as well as cancer. Importantly, nearly all kidney disorders have been shown to involve redox imbalance, reductive stress, oxidative stress, and mitochondrial abnormalities such as impaired mitochondrial homeostasis, including disrupted mitophagy and deranged mitochondrial unfolded protein responses. Understanding how these redox-related dysregulated pathways operate may give us new insights into how to design novel approaches to fighting kidney disease. This Special Issue of Biomolecules entitled “Redox imbalance and mitochondrial abnormalities in kidney disease” covers a variety of topics focusing on oxidative stress, mitochondrial dysfunction, and antioxidation enhancement implicated in kidney disease or kidney transplantation.
Medicine --- Pharmacology --- diabetic kidney disease --- caloric restriction --- NADH/NAD+ --- redox imbalance --- mitochondrial homeostasis --- mitophagy --- oxidative stress --- kidney allograft --- kidney rejection --- ischemia --- acute kidney injury (AKI) --- chronic kidney disease (CKD) --- tricarboxylic acid (TCA) cycle --- mitochondrial metabolism --- mitochondrial redox signaling --- mitochondrial proteins --- oxidative phosphorylation (OXPHOS) --- fatty acid (FA) β-oxidation --- mitochondrial dynamics --- biogenesis --- diabetes --- kidney --- mitochondria --- Oryza sativa --- rice husk --- TCA cycle metabolites --- kidney diseases --- renalase --- chronic kidney disease --- major adverse cardiovascular outcomes --- cadmium --- kidney injury --- renal toxicity --- oxidative damage --- proximal tubule --- controlled oxygenated rewarming --- mitochondrial uncoupling --- rewarming injury --- temperature paradox --- redox --- mitochondrial dysfunction --- SGLT2 --- mitochondrial reactive oxygen species --- Warburg effect --- podocytopathies --- mitochondrial oxidative stress --- reactive oxygen species (ROS) --- antioxidant defense --- cell death
Choose an application
Mitochondria are the powerhouses of cells; however, mitochondrial dysfunction causes energy depletion and cell death in a variety of diseases. Altered oxidative phosphorylation and ion homeostasis are associated with ROS production resulting from the disassembly of respiratory supercomplexes and the disruption of electron transfer chains. In pathological conditions, the dysregulation of mitochondrial homeostasis promotes Ca2+ overload in the matrix and ROS accumulation, which induces the mitochondrial permeability transition pore formation responsible for mitochondrial morphological changes linked to membrane dynamics, and ultimately, cell death. Finally, studies on the impaired mitochondrial bioenergetics in pathology could provide molecular tools to counteract diseases associated with mitochondrial dysfunction.
aging heart --- Bcl-2 family --- mitochondria --- programmed cell death --- fatty acid oxidation --- palmitate --- oleate --- m.3243A> --- G mutation --- MT-ATP6 --- m.8909T> --- C --- ATP synthase --- nephropathy --- oxidative phosphorylation --- mitochondrial disease --- cardiolipin --- Barth syndrome --- Sengers syndrome --- respiratory chain --- Dilated Cardiomyopathy with Ataxia --- cardiomyopathy --- mammalian complex I --- NADH dehydrogenase --- complex I assembly --- complex I structure --- complex I deficiency --- supernumerary subunits --- electron transport chain --- mitochondrial dysfunction --- Leigh syndrome --- mitochondrial diseases --- yeast --- Saccharomyces cerevisiae --- pet mutants --- pancreatic endocrine cells --- mathematical model --- cellular bioenergetics --- diabetes --- glucagon --- insulin --- exercise --- immune system --- metabolic disease --- COVID-19 --- mitochondrial dynamics --- viral infections --- MAVS --- RIG-I --- MDA5 --- innate immune response --- SARS CoV-2 --- RSV --- influenza --- respiratory supercomplexes --- ROS --- ATP synthase/hydrolase --- mitochondrial permeability transition pore --- cristae --- cellular signaling --- human disease --- mitochondrial dynamic --- cell signaling --- cancer --- respiratory complexes --- oxidative stress --- mitochondrial DNA --- MTCYB mutations --- cytochrome b --- complex III --- aging --- energy metabolism --- entorhinal cortex --- lipoxidation-derived damage --- neurodegeneration --- oxidative damage --- protein import --- respiratory complex assembly --- supercomplexes --- mitochondrial proteostasis --- heart failure --- bioenergetics --- assembly factor --- atypical myopathy --- high-resolution respirometry --- toxicity assays --- cell culture --- equine primary myoblasts --- fibroblasts --- frozen tissue --- leukocytes --- oxygen consumption --- platelets --- respirometry --- skeletal muscle --- n/a
Choose an application
Mitochondria are the powerhouses of cells; however, mitochondrial dysfunction causes energy depletion and cell death in a variety of diseases. Altered oxidative phosphorylation and ion homeostasis are associated with ROS production resulting from the disassembly of respiratory supercomplexes and the disruption of electron transfer chains. In pathological conditions, the dysregulation of mitochondrial homeostasis promotes Ca2+ overload in the matrix and ROS accumulation, which induces the mitochondrial permeability transition pore formation responsible for mitochondrial morphological changes linked to membrane dynamics, and ultimately, cell death. Finally, studies on the impaired mitochondrial bioenergetics in pathology could provide molecular tools to counteract diseases associated with mitochondrial dysfunction.
Research & information: general --- Biology, life sciences --- Biochemistry --- aging heart --- Bcl-2 family --- mitochondria --- programmed cell death --- fatty acid oxidation --- palmitate --- oleate --- m.3243A> --- G mutation --- MT-ATP6 --- m.8909T> --- C --- ATP synthase --- nephropathy --- oxidative phosphorylation --- mitochondrial disease --- cardiolipin --- Barth syndrome --- Sengers syndrome --- respiratory chain --- Dilated Cardiomyopathy with Ataxia --- cardiomyopathy --- mammalian complex I --- NADH dehydrogenase --- complex I assembly --- complex I structure --- complex I deficiency --- supernumerary subunits --- electron transport chain --- mitochondrial dysfunction --- Leigh syndrome --- mitochondrial diseases --- yeast --- Saccharomyces cerevisiae --- pet mutants --- pancreatic endocrine cells --- mathematical model --- cellular bioenergetics --- diabetes --- glucagon --- insulin --- exercise --- immune system --- metabolic disease --- COVID-19 --- mitochondrial dynamics --- viral infections --- MAVS --- RIG-I --- MDA5 --- innate immune response --- SARS CoV-2 --- RSV --- influenza --- respiratory supercomplexes --- ROS --- ATP synthase/hydrolase --- mitochondrial permeability transition pore --- cristae --- cellular signaling --- human disease --- mitochondrial dynamic --- cell signaling --- cancer --- respiratory complexes --- oxidative stress --- mitochondrial DNA --- MTCYB mutations --- cytochrome b --- complex III --- aging --- energy metabolism --- entorhinal cortex --- lipoxidation-derived damage --- neurodegeneration --- oxidative damage --- protein import --- respiratory complex assembly --- supercomplexes --- mitochondrial proteostasis --- heart failure --- bioenergetics --- assembly factor --- atypical myopathy --- high-resolution respirometry --- toxicity assays --- cell culture --- equine primary myoblasts --- fibroblasts --- frozen tissue --- leukocytes --- oxygen consumption --- platelets --- respirometry --- skeletal muscle
Listing 1 - 5 of 5 |
Sort by
|