Listing 1 - 7 of 7 |
Sort by
|
Choose an application
Fay and Brittain present statistical hypothesis testing and compatible confidence intervals, focusing on application and proper interpretation. The emphasis is on equipping applied statisticians with enough tools - and advice on choosing among them - to find reasonable methods for almost any problem and enough theory to tackle new problems by modifying existing methods. After covering the basic mathematical theory and scientific principles, tests and confidence intervals are developed for specific types of data. Essential methods for applications are covered, such as general procedures for creating tests (e.g., likelihood ratio, bootstrap, permutation, testing from models), adjustments for multiple testing, clustering, stratification, causality, censoring, missing data, group sequential tests, and non-inferiority tests. New methods developed by the authors are included throughout, such as melded confidence intervals for comparing two samples and confidence intervals associated with Wilcoxon-Mann-Whitney tests and Kaplan-Meier estimates. Examples, exercises, and the R package asht support practical use.
Choose an application
Choose an application
Tests d'hipòtesi (Estadística) --- Distribució (Teoria de la probabilitat) --- Estadística matemàtica --- Hipòtesi --- Comprovació d'hipòtesi (Estadística) --- Hipòtesi estadística --- Tests de significació estadística --- Statistical hypothesis testing. --- Statistical hypothesis testing --- Data processing. --- Hypothesis testing (Statistics) --- Significance testing (Statistics) --- Statistical significance testing --- Testing statistical hypotheses --- Distribution (Probability theory) --- Hypothesis --- Mathematical statistics
Choose an application
"A much-needed synthesis of active inference, a theory of mind that addresses cognition, behavior, intelligence, & mental disorders and which can be extended to explain behavior in all living systems"--
Neurosciences --- Philosophy of mind --- Active Inference --- free energy --- predictive coding --- Bayesian inference --- predictive processing --- planning as inference --- active sensing --- hypothesis testing --- behavior --- theoretical neurobiology --- brain --- computational neuroscience --- perception --- planning --- action --- control. --- Perception. --- Inference. --- Neurobiology. --- Human behavior models. --- Knowledge, Theory of. --- Bayesian statistical decision theory. --- SCIENCE / Life Sciences / Neuroscience --- PSYCHOLOGY / Cognitive Neuroscience & Cognitive Neuropsychology --- PHILOSOPHY / Mind & Body --- Bayes' solution --- Bayesian analysis --- Statistical decision --- Epistemology --- Theory of knowledge --- Philosophy --- Psychology --- Behavioral modeling --- Behavioral models --- Modeling human behavior --- Models of behavior --- Ampliative induction --- Induction, Ampliative --- Inference (Logic) --- Reasoning --- Supraliminal perception --- Cognition --- Apperception --- Senses and sensation --- Thought and thinking --- Methodology
Choose an application
Data science, information theory, probability theory, statistical learning and other related disciplines greatly benefit from non-negative measures of dissimilarity between pairs of probability measures. These are known as divergence measures, and exploring their mathematical foundations and diverse applications is of significant interest. The present Special Issue, entitled “Divergence Measures: Mathematical Foundations and Applications in Information-Theoretic and Statistical Problems”, includes eight original contributions, and it is focused on the study of the mathematical properties and applications of classical and generalized divergence measures from an information-theoretic perspective. It mainly deals with two key generalizations of the relative entropy: namely, the R_ényi divergence and the important class of f -divergences. It is our hope that the readers will find interest in this Special Issue, which will stimulate further research in the study of the mathematical foundations and applications of divergence measures.
Research & information: general --- Mathematics & science --- Bregman divergence --- f-divergence --- Jensen-Bregman divergence --- Jensen diversity --- Jensen-Shannon divergence --- capacitory discrimination --- Jensen-Shannon centroid --- mixture family --- information geometry --- difference of convex (DC) programming --- conditional Rényi divergence --- horse betting --- Kelly gambling --- Rényi divergence --- Rényi mutual information --- relative entropy --- chi-squared divergence --- f-divergences --- method of types --- large deviations --- strong data-processing inequalities --- information contraction --- maximal correlation --- Markov chains --- information inequalities --- mutual information --- Rényi entropy --- Carlson-Levin inequality --- information measures --- hypothesis testing --- total variation --- skew-divergence --- convexity --- Pinsker's inequality --- Bayes risk --- statistical divergences --- minimum divergence estimator --- maximum likelihood --- bootstrap --- conditional limit theorem --- Bahadur efficiency --- α-mutual information --- Augustin-Csiszár mutual information --- data transmission --- error exponents --- dimensionality reduction --- discriminant analysis --- statistical inference --- Bregman divergence --- f-divergence --- Jensen-Bregman divergence --- Jensen diversity --- Jensen-Shannon divergence --- capacitory discrimination --- Jensen-Shannon centroid --- mixture family --- information geometry --- difference of convex (DC) programming --- conditional Rényi divergence --- horse betting --- Kelly gambling --- Rényi divergence --- Rényi mutual information --- relative entropy --- chi-squared divergence --- f-divergences --- method of types --- large deviations --- strong data-processing inequalities --- information contraction --- maximal correlation --- Markov chains --- information inequalities --- mutual information --- Rényi entropy --- Carlson-Levin inequality --- information measures --- hypothesis testing --- total variation --- skew-divergence --- convexity --- Pinsker's inequality --- Bayes risk --- statistical divergences --- minimum divergence estimator --- maximum likelihood --- bootstrap --- conditional limit theorem --- Bahadur efficiency --- α-mutual information --- Augustin-Csiszár mutual information --- data transmission --- error exponents --- dimensionality reduction --- discriminant analysis --- statistical inference
Choose an application
Data science, information theory, probability theory, statistical learning and other related disciplines greatly benefit from non-negative measures of dissimilarity between pairs of probability measures. These are known as divergence measures, and exploring their mathematical foundations and diverse applications is of significant interest. The present Special Issue, entitled “Divergence Measures: Mathematical Foundations and Applications in Information-Theoretic and Statistical Problems”, includes eight original contributions, and it is focused on the study of the mathematical properties and applications of classical and generalized divergence measures from an information-theoretic perspective. It mainly deals with two key generalizations of the relative entropy: namely, the R_ényi divergence and the important class of f -divergences. It is our hope that the readers will find interest in this Special Issue, which will stimulate further research in the study of the mathematical foundations and applications of divergence measures.
Research & information: general --- Mathematics & science --- Bregman divergence --- f-divergence --- Jensen–Bregman divergence --- Jensen diversity --- Jensen–Shannon divergence --- capacitory discrimination --- Jensen–Shannon centroid --- mixture family --- information geometry --- difference of convex (DC) programming --- conditional Rényi divergence --- horse betting --- Kelly gambling --- Rényi divergence --- Rényi mutual information --- relative entropy --- chi-squared divergence --- f-divergences --- method of types --- large deviations --- strong data–processing inequalities --- information contraction --- maximal correlation --- Markov chains --- information inequalities --- mutual information --- Rényi entropy --- Carlson–Levin inequality --- information measures --- hypothesis testing --- total variation --- skew-divergence --- convexity --- Pinsker’s inequality --- Bayes risk --- statistical divergences --- minimum divergence estimator --- maximum likelihood --- bootstrap --- conditional limit theorem --- Bahadur efficiency --- α-mutual information --- Augustin–Csiszár mutual information --- data transmission --- error exponents --- dimensionality reduction --- discriminant analysis --- statistical inference --- n/a --- Jensen-Bregman divergence --- Jensen-Shannon divergence --- Jensen-Shannon centroid --- conditional Rényi divergence --- Rényi divergence --- Rényi mutual information --- strong data-processing inequalities --- Rényi entropy --- Carlson-Levin inequality --- Pinsker's inequality --- Augustin-Csiszár mutual information
Choose an application
Data science, information theory, probability theory, statistical learning and other related disciplines greatly benefit from non-negative measures of dissimilarity between pairs of probability measures. These are known as divergence measures, and exploring their mathematical foundations and diverse applications is of significant interest. The present Special Issue, entitled “Divergence Measures: Mathematical Foundations and Applications in Information-Theoretic and Statistical Problems”, includes eight original contributions, and it is focused on the study of the mathematical properties and applications of classical and generalized divergence measures from an information-theoretic perspective. It mainly deals with two key generalizations of the relative entropy: namely, the R_ényi divergence and the important class of f -divergences. It is our hope that the readers will find interest in this Special Issue, which will stimulate further research in the study of the mathematical foundations and applications of divergence measures.
Bregman divergence --- f-divergence --- Jensen–Bregman divergence --- Jensen diversity --- Jensen–Shannon divergence --- capacitory discrimination --- Jensen–Shannon centroid --- mixture family --- information geometry --- difference of convex (DC) programming --- conditional Rényi divergence --- horse betting --- Kelly gambling --- Rényi divergence --- Rényi mutual information --- relative entropy --- chi-squared divergence --- f-divergences --- method of types --- large deviations --- strong data–processing inequalities --- information contraction --- maximal correlation --- Markov chains --- information inequalities --- mutual information --- Rényi entropy --- Carlson–Levin inequality --- information measures --- hypothesis testing --- total variation --- skew-divergence --- convexity --- Pinsker’s inequality --- Bayes risk --- statistical divergences --- minimum divergence estimator --- maximum likelihood --- bootstrap --- conditional limit theorem --- Bahadur efficiency --- α-mutual information --- Augustin–Csiszár mutual information --- data transmission --- error exponents --- dimensionality reduction --- discriminant analysis --- statistical inference --- n/a --- Jensen-Bregman divergence --- Jensen-Shannon divergence --- Jensen-Shannon centroid --- conditional Rényi divergence --- Rényi divergence --- Rényi mutual information --- strong data-processing inequalities --- Rényi entropy --- Carlson-Levin inequality --- Pinsker's inequality --- Augustin-Csiszár mutual information
Listing 1 - 7 of 7 |
Sort by
|