Listing 1 - 9 of 9 |
Sort by
|
Choose an application
This book is a collection of 10 research articles (from 18 submissions) authored by researchers and peer reviewed by professionals in the field to address the use of sustainable composite materials in civil and architectural engineering over the course of more than 2 years. Fiber-reinforced plastic (FRP), geopolymers, and various recycled and repurposed waste materials are among the items addressed, used in a variety of applications from flame retardance to energy consumption. This book is a great resource for both academics and professionals in the field of engineering.
basic oxygen furnace slag --- autoclave test --- geopolymer technology --- expansion behavior --- recycling --- Ag/MWCNT --- EMSE --- laminated woven fabric --- PTFE film --- screen printing --- utilization --- SiC sludge --- alkaline activator solutions --- synergistic effect --- geopolymer reaction --- flame retardant --- organic–inorganic hybrid --- polyurethane --- sol–gel method --- graphene nanoplatelets --- graphene nanoplatelets/epoxy nanocomposite --- mechanical properties --- planetary centrifugal mixing --- three-roll milling --- traditional dispersal --- cement soil --- nano MgO --- carbonization process --- compressive strength --- energy dissipation --- asphalt concrete --- radiation cooling --- emissivity --- thermal conductivity --- recycled carbon fiber --- fiber-reinforced concrete --- microwave-assisted pyrolysis --- shock wave --- inorganic --- geopolymer --- heat storage --- light reflectivity --- heat flux --- sustainable cities and communities --- carbon fiber-reinforced polymer --- silane coupling agents --- n/a --- organic-inorganic hybrid --- sol-gel method
Choose an application
This book is a collection of 10 research articles (from 18 submissions) authored by researchers and peer reviewed by professionals in the field to address the use of sustainable composite materials in civil and architectural engineering over the course of more than 2 years. Fiber-reinforced plastic (FRP), geopolymers, and various recycled and repurposed waste materials are among the items addressed, used in a variety of applications from flame retardance to energy consumption. This book is a great resource for both academics and professionals in the field of engineering.
Technology: general issues --- History of engineering & technology --- basic oxygen furnace slag --- autoclave test --- geopolymer technology --- expansion behavior --- recycling --- Ag/MWCNT --- EMSE --- laminated woven fabric --- PTFE film --- screen printing --- utilization --- SiC sludge --- alkaline activator solutions --- synergistic effect --- geopolymer reaction --- flame retardant --- organic-inorganic hybrid --- polyurethane --- sol-gel method --- graphene nanoplatelets --- graphene nanoplatelets/epoxy nanocomposite --- mechanical properties --- planetary centrifugal mixing --- three-roll milling --- traditional dispersal --- cement soil --- nano MgO --- carbonization process --- compressive strength --- energy dissipation --- asphalt concrete --- radiation cooling --- emissivity --- thermal conductivity --- recycled carbon fiber --- fiber-reinforced concrete --- microwave-assisted pyrolysis --- shock wave --- inorganic --- geopolymer --- heat storage --- light reflectivity --- heat flux --- sustainable cities and communities --- carbon fiber-reinforced polymer --- silane coupling agents --- basic oxygen furnace slag --- autoclave test --- geopolymer technology --- expansion behavior --- recycling --- Ag/MWCNT --- EMSE --- laminated woven fabric --- PTFE film --- screen printing --- utilization --- SiC sludge --- alkaline activator solutions --- synergistic effect --- geopolymer reaction --- flame retardant --- organic-inorganic hybrid --- polyurethane --- sol-gel method --- graphene nanoplatelets --- graphene nanoplatelets/epoxy nanocomposite --- mechanical properties --- planetary centrifugal mixing --- three-roll milling --- traditional dispersal --- cement soil --- nano MgO --- carbonization process --- compressive strength --- energy dissipation --- asphalt concrete --- radiation cooling --- emissivity --- thermal conductivity --- recycled carbon fiber --- fiber-reinforced concrete --- microwave-assisted pyrolysis --- shock wave --- inorganic --- geopolymer --- heat storage --- light reflectivity --- heat flux --- sustainable cities and communities --- carbon fiber-reinforced polymer --- silane coupling agents
Choose an application
This book is a collection of 10 research articles (from 18 submissions) authored by researchers and peer reviewed by professionals in the field to address the use of sustainable composite materials in civil and architectural engineering over the course of more than 2 years. Fiber-reinforced plastic (FRP), geopolymers, and various recycled and repurposed waste materials are among the items addressed, used in a variety of applications from flame retardance to energy consumption. This book is a great resource for both academics and professionals in the field of engineering.
Technology: general issues --- History of engineering & technology --- basic oxygen furnace slag --- autoclave test --- geopolymer technology --- expansion behavior --- recycling --- Ag/MWCNT --- EMSE --- laminated woven fabric --- PTFE film --- screen printing --- utilization --- SiC sludge --- alkaline activator solutions --- synergistic effect --- geopolymer reaction --- flame retardant --- organic–inorganic hybrid --- polyurethane --- sol–gel method --- graphene nanoplatelets --- graphene nanoplatelets/epoxy nanocomposite --- mechanical properties --- planetary centrifugal mixing --- three-roll milling --- traditional dispersal --- cement soil --- nano MgO --- carbonization process --- compressive strength --- energy dissipation --- asphalt concrete --- radiation cooling --- emissivity --- thermal conductivity --- recycled carbon fiber --- fiber-reinforced concrete --- microwave-assisted pyrolysis --- shock wave --- inorganic --- geopolymer --- heat storage --- light reflectivity --- heat flux --- sustainable cities and communities --- carbon fiber-reinforced polymer --- silane coupling agents --- n/a --- organic-inorganic hybrid --- sol-gel method
Choose an application
For this reprint, we intend to cover theoretical as well as experimental works performed on small scale to predict the material properties and characteristics of any advanced and metamaterials. New studies on mechanics of small-scale structures such as MEMS/NEMS, carbon and non-carbon nanotubes (e.g., CNTs, Carbon nitride, and Boron nitride nanotubes), micro/nano-sensors, nanocomposites, macrocomposites reinforced by micro-/nano-fillers (e.g., graphene platelets), etc., are included in this reprint.
Technology: general issues --- History of engineering & technology --- carbon nanotube-reinforced composite --- forced vibration --- dynamic analysis --- beam --- harmonic load --- assembly --- metal-organic frameworks --- hydrogen evolution reaction --- Cu2−xS --- interfacial interaction --- conducting carbon black network --- mechanical property --- electromagnetic interference shielding --- CNT --- elastic foundations --- nonlinear free vibration --- nonlinear frequency --- shallow shell structures --- hyperelastic micro/nanobeam --- extended modified couple stress theory --- strain-stiffening effect --- nonlinear frequency response --- functionally graded material --- thermoelasticity --- sliding contact --- wear --- heating from friction --- thermoelastic instability --- wood --- nano-, micro-, meso-, and macro-structure --- multiscale mechanical properties --- size effects --- Hall-Petch law --- dendrochronology --- surface bonding --- nanoporous graphene --- atomic force microscopy --- hyperelastic microcantilever --- softening resonance --- non-contact cantilever --- shooting and arc-length continuation method --- developed Galerkin method --- graphene nanoplatelets --- recycle carbon fibers --- air nanobubbles --- cement-based composites and nanocomposites --- mechanical properties --- electrical properties
Choose an application
In a similar way to many other engineering fields, the road pavement industry strongly affects the critical issues of our generation, including climate change, pollutant emission, the exploitation of natural resources and economic crises. For this reason, technicians and researchers are searching ravenously for sustainable solutions to implement in current road construction systems with the following goals: To reduce the consumption of energy and virgin materials; To run environmentally and economically friendly maintenance; To recycle waste from different industrial processes; To decrease the noise, the pollution and the heat generated by traffic, particularly in urban contexts. This Special Issue aims to collect high-quality studies that combine the aforementioned solutions, including works pertaining to: The hot, warm, and cold recycling of reclaimed asphalt pavement; Marginal materials for asphalt pavements; Innovative sustainable materials; Durability and environmental aspects; Structure performance, modeling and design; Advanced trends in rehabilitation and preservation; Surface characteristics and road safety; Management system/life cycle analysis; Urban heat island mitigation; Energy harvesting.
porous concrete --- metakaolin --- geopolymers --- permeable pavements --- urban drainage systems --- maintenance --- reinforced asphalt pavement --- geogrid --- interlayer bonding --- static shear test --- cyclic shear test --- fatigue properties --- warm mix asphalt --- natural zeolite --- gas emissions --- energy consumption --- production costs --- bituminous mixtures --- nano-additives --- nanoclay --- carbon nanotubes --- graphene nanoplatelets --- nano-calcium oxide --- nano-titanium dioxide --- sonication --- fatigue performance --- self-healing --- hot-mix asphalt --- ageing --- cooling --- temperature segregation --- hauling --- insulated truck --- re-heating --- contact stresses --- rolling resistance --- braking --- free rolling --- load --- inflation pressure --- speed --- porosity --- permeability coefficients --- mixing ratio --- aggregate size --- compressive strength --- computed tomography (CT) image --- ex-post CBA --- road modernisation --- incidence of traffic accidents --- decision-making process --- life cycle assessment --- waste management --- circular economy --- alternative materials --- construction --- road stabilisation --- bearing capacity --- unbound base course --- cold central-plant recycled base course --- falling weight deflectometer (FWD), cold recycling in-plant --- bitumen --- aging --- rejuvenation --- reclaimed asphalt --- recycling --- coal bottom ash --- waste material --- recycle --- construction industry --- civil engineering --- bitumen selection --- performance-graded bitumen --- asphalt pavement temperatures --- temperature maps --- n/a
Choose an application
In a similar way to many other engineering fields, the road pavement industry strongly affects the critical issues of our generation, including climate change, pollutant emission, the exploitation of natural resources and economic crises. For this reason, technicians and researchers are searching ravenously for sustainable solutions to implement in current road construction systems with the following goals: To reduce the consumption of energy and virgin materials; To run environmentally and economically friendly maintenance; To recycle waste from different industrial processes; To decrease the noise, the pollution and the heat generated by traffic, particularly in urban contexts. This Special Issue aims to collect high-quality studies that combine the aforementioned solutions, including works pertaining to: The hot, warm, and cold recycling of reclaimed asphalt pavement; Marginal materials for asphalt pavements; Innovative sustainable materials; Durability and environmental aspects; Structure performance, modeling and design; Advanced trends in rehabilitation and preservation; Surface characteristics and road safety; Management system/life cycle analysis; Urban heat island mitigation; Energy harvesting.
Technology: general issues --- History of engineering & technology --- porous concrete --- metakaolin --- geopolymers --- permeable pavements --- urban drainage systems --- maintenance --- reinforced asphalt pavement --- geogrid --- interlayer bonding --- static shear test --- cyclic shear test --- fatigue properties --- warm mix asphalt --- natural zeolite --- gas emissions --- energy consumption --- production costs --- bituminous mixtures --- nano-additives --- nanoclay --- carbon nanotubes --- graphene nanoplatelets --- nano-calcium oxide --- nano-titanium dioxide --- sonication --- fatigue performance --- self-healing --- hot-mix asphalt --- ageing --- cooling --- temperature segregation --- hauling --- insulated truck --- re-heating --- contact stresses --- rolling resistance --- braking --- free rolling --- load --- inflation pressure --- speed --- porosity --- permeability coefficients --- mixing ratio --- aggregate size --- compressive strength --- computed tomography (CT) image --- ex-post CBA --- road modernisation --- incidence of traffic accidents --- decision-making process --- life cycle assessment --- waste management --- circular economy --- alternative materials --- construction --- road stabilisation --- bearing capacity --- unbound base course --- cold central-plant recycled base course --- falling weight deflectometer (FWD), cold recycling in-plant --- bitumen --- aging --- rejuvenation --- reclaimed asphalt --- recycling --- coal bottom ash --- waste material --- recycle --- construction industry --- civil engineering --- bitumen selection --- performance-graded bitumen --- asphalt pavement temperatures --- temperature maps --- porous concrete --- metakaolin --- geopolymers --- permeable pavements --- urban drainage systems --- maintenance --- reinforced asphalt pavement --- geogrid --- interlayer bonding --- static shear test --- cyclic shear test --- fatigue properties --- warm mix asphalt --- natural zeolite --- gas emissions --- energy consumption --- production costs --- bituminous mixtures --- nano-additives --- nanoclay --- carbon nanotubes --- graphene nanoplatelets --- nano-calcium oxide --- nano-titanium dioxide --- sonication --- fatigue performance --- self-healing --- hot-mix asphalt --- ageing --- cooling --- temperature segregation --- hauling --- insulated truck --- re-heating --- contact stresses --- rolling resistance --- braking --- free rolling --- load --- inflation pressure --- speed --- porosity --- permeability coefficients --- mixing ratio --- aggregate size --- compressive strength --- computed tomography (CT) image --- ex-post CBA --- road modernisation --- incidence of traffic accidents --- decision-making process --- life cycle assessment --- waste management --- circular economy --- alternative materials --- construction --- road stabilisation --- bearing capacity --- unbound base course --- cold central-plant recycled base course --- falling weight deflectometer (FWD), cold recycling in-plant --- bitumen --- aging --- rejuvenation --- reclaimed asphalt --- recycling --- coal bottom ash --- waste material --- recycle --- construction industry --- civil engineering --- bitumen selection --- performance-graded bitumen --- asphalt pavement temperatures --- temperature maps
Choose an application
The advancement in manufacturing technology and scientific research has improved the development of enhanced composite materials with tailored properties depending on their design requirements in many engineering fields, as well as in thermal and energy management. Some representative examples of advanced materials in many smart applications and complex structures rely on laminated composites, functionally graded materials (FGMs), and carbon-based constituents, primarily carbon nanotubes (CNTs), and graphene sheets or nanoplatelets, because of their remarkable mechanical properties, electrical conductivity and high permeability. For such materials, experimental tests usually require a large economical effort because of the complex nature of each constituent, together with many environmental, geometrical and or mechanical uncertainties of non-conventional specimens. At the same time, the theoretical and/or computational approaches represent a valid alternative for designing complex manufacts with more flexibility. In such a context, the development of advanced theoretical and computational models for composite materials and structures is a subject of active research, as explored here for a large variety of structural members, involving the static, dynamic, buckling, and damage/fracturing problems at different scales.
Technology: general issues --- History of engineering & technology --- prestressed concrete cylinder pipe --- external prestressed steel strands --- theoretical study --- wire-breakage --- first-principles calculation --- Heusler compounds --- gapless half metals --- spin gapless semiconductor --- bi-directional functionally graded --- bolotin scheme --- dynamic stability --- elastic foundation --- porosity --- two-axis four-gimbal --- electro-optical pod --- dynamics modeling --- coarse-fine composite --- Carbon-fiber-reinforced plastics (CFRPs) --- fastener --- arc --- Joule heat --- finite element analysis (FEA) --- piezoelectric effect --- bimodular model --- functionally-graded materials --- cantilever --- vibration --- functional reinforcement --- graphene nanoplatelets --- higher-order shear deformable laminated beams --- nanocomposites --- nonlinear free vibration --- sandwich beams --- fractional calculus --- Riemann-Liouville fractional derivative --- viscoelasticity --- pipe flow --- fractional Maxwell model --- fractional Zener model --- fractional Burgers model --- Riemann-Liouville fractional derivative --- fractional Kelvin-Voigt model --- fractional Poynting-Thomson model --- curved sandwich nanobeams --- nonlocal strain gradient theory --- quasi-3D higher-order shear theory --- thermal-buckling --- FG-GPL --- GDQ --- heat transfer equation --- higher-order shear deformation theory --- buckling --- FE-GDQ --- functionally graded materials --- 3D elasticity --- 3D shell model --- steady-state hygro-elastic analysis --- Fick moisture diffusion equation --- moisture content profile --- layer-wise approach --- prestressed concrete cylinder pipe --- external prestressed steel strands --- theoretical study --- wire-breakage --- first-principles calculation --- Heusler compounds --- gapless half metals --- spin gapless semiconductor --- bi-directional functionally graded --- bolotin scheme --- dynamic stability --- elastic foundation --- porosity --- two-axis four-gimbal --- electro-optical pod --- dynamics modeling --- coarse-fine composite --- Carbon-fiber-reinforced plastics (CFRPs) --- fastener --- arc --- Joule heat --- finite element analysis (FEA) --- piezoelectric effect --- bimodular model --- functionally-graded materials --- cantilever --- vibration --- functional reinforcement --- graphene nanoplatelets --- higher-order shear deformable laminated beams --- nanocomposites --- nonlinear free vibration --- sandwich beams --- fractional calculus --- Riemann-Liouville fractional derivative --- viscoelasticity --- pipe flow --- fractional Maxwell model --- fractional Zener model --- fractional Burgers model --- Riemann-Liouville fractional derivative --- fractional Kelvin-Voigt model --- fractional Poynting-Thomson model --- curved sandwich nanobeams --- nonlocal strain gradient theory --- quasi-3D higher-order shear theory --- thermal-buckling --- FG-GPL --- GDQ --- heat transfer equation --- higher-order shear deformation theory --- buckling --- FE-GDQ --- functionally graded materials --- 3D elasticity --- 3D shell model --- steady-state hygro-elastic analysis --- Fick moisture diffusion equation --- moisture content profile --- layer-wise approach
Choose an application
In a similar way to many other engineering fields, the road pavement industry strongly affects the critical issues of our generation, including climate change, pollutant emission, the exploitation of natural resources and economic crises. For this reason, technicians and researchers are searching ravenously for sustainable solutions to implement in current road construction systems with the following goals: To reduce the consumption of energy and virgin materials; To run environmentally and economically friendly maintenance; To recycle waste from different industrial processes; To decrease the noise, the pollution and the heat generated by traffic, particularly in urban contexts. This Special Issue aims to collect high-quality studies that combine the aforementioned solutions, including works pertaining to: The hot, warm, and cold recycling of reclaimed asphalt pavement; Marginal materials for asphalt pavements; Innovative sustainable materials; Durability and environmental aspects; Structure performance, modeling and design; Advanced trends in rehabilitation and preservation; Surface characteristics and road safety; Management system/life cycle analysis; Urban heat island mitigation; Energy harvesting.
Technology: general issues --- History of engineering & technology --- porous concrete --- metakaolin --- geopolymers --- permeable pavements --- urban drainage systems --- maintenance --- reinforced asphalt pavement --- geogrid --- interlayer bonding --- static shear test --- cyclic shear test --- fatigue properties --- warm mix asphalt --- natural zeolite --- gas emissions --- energy consumption --- production costs --- bituminous mixtures --- nano-additives --- nanoclay --- carbon nanotubes --- graphene nanoplatelets --- nano-calcium oxide --- nano-titanium dioxide --- sonication --- fatigue performance --- self-healing --- hot-mix asphalt --- ageing --- cooling --- temperature segregation --- hauling --- insulated truck --- re-heating --- contact stresses --- rolling resistance --- braking --- free rolling --- load --- inflation pressure --- speed --- porosity --- permeability coefficients --- mixing ratio --- aggregate size --- compressive strength --- computed tomography (CT) image --- ex-post CBA --- road modernisation --- incidence of traffic accidents --- decision-making process --- life cycle assessment --- waste management --- circular economy --- alternative materials --- construction --- road stabilisation --- bearing capacity --- unbound base course --- cold central-plant recycled base course --- falling weight deflectometer (FWD), cold recycling in-plant --- bitumen --- aging --- rejuvenation --- reclaimed asphalt --- recycling --- coal bottom ash --- waste material --- recycle --- construction industry --- civil engineering --- bitumen selection --- performance-graded bitumen --- asphalt pavement temperatures --- temperature maps --- n/a
Choose an application
The advancement in manufacturing technology and scientific research has improved the development of enhanced composite materials with tailored properties depending on their design requirements in many engineering fields, as well as in thermal and energy management. Some representative examples of advanced materials in many smart applications and complex structures rely on laminated composites, functionally graded materials (FGMs), and carbon-based constituents, primarily carbon nanotubes (CNTs), and graphene sheets or nanoplatelets, because of their remarkable mechanical properties, electrical conductivity and high permeability. For such materials, experimental tests usually require a large economical effort because of the complex nature of each constituent, together with many environmental, geometrical and or mechanical uncertainties of non-conventional specimens. At the same time, the theoretical and/or computational approaches represent a valid alternative for designing complex manufacts with more flexibility. In such a context, the development of advanced theoretical and computational models for composite materials and structures is a subject of active research, as explored here for a large variety of structural members, involving the static, dynamic, buckling, and damage/fracturing problems at different scales.
prestressed concrete cylinder pipe --- external prestressed steel strands --- theoretical study --- wire-breakage --- first-principles calculation --- Heusler compounds --- gapless half metals --- spin gapless semiconductor --- bi-directional functionally graded --- bolotin scheme --- dynamic stability --- elastic foundation --- porosity --- two-axis four-gimbal --- electro-optical pod --- dynamics modeling --- coarse–fine composite --- Carbon-fiber-reinforced plastics (CFRPs) --- fastener --- arc --- Joule heat --- finite element analysis (FEA) --- piezoelectric effect --- bimodular model --- functionally-graded materials --- cantilever --- vibration --- functional reinforcement --- graphene nanoplatelets --- higher-order shear deformable laminated beams --- nanocomposites --- nonlinear free vibration --- sandwich beams --- fractional calculus --- Riemann-Liouville fractional derivative --- viscoelasticity --- pipe flow --- fractional Maxwell model --- fractional Zener model --- fractional Burgers model --- Riemann–Liouville fractional derivative --- fractional Kelvin–Voigt model --- fractional Poynting–Thomson model --- curved sandwich nanobeams --- nonlocal strain gradient theory --- quasi-3D higher-order shear theory --- thermal-buckling --- FG-GPL --- GDQ --- heat transfer equation --- higher-order shear deformation theory --- buckling --- FE-GDQ --- functionally graded materials --- 3D elasticity --- 3D shell model --- steady-state hygro-elastic analysis --- Fick moisture diffusion equation --- moisture content profile --- layer-wise approach --- n/a --- coarse-fine composite --- fractional Kelvin-Voigt model --- fractional Poynting-Thomson model
Listing 1 - 9 of 9 |
Sort by
|