Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Significant research efforts are currently being undertaken in the field of natural and synthetic polymers for a range of biomedical applications. (Co)polymer molecular structure, topology, self-assemblies, biodegradation, and hydrophobicity are of biomaterial importance for intrinsically biocompatible polymer systems. This book is comprised of nine chapters, published previously as original research contributions of the Special Issue focused on advances in polymeric materials for biomedical applications. The authors of these contributions are predominantly from central European countries, Italy and the United Kingdom. The content of this book will be of interest to scientists, scholars and students working in this area of knowledge, reflecting the progress in the development of advanced natural and synthetic polymer biomaterials.
Technology: general issues --- fish gelatin --- citric acid --- electrospinning --- pH --- thermal treatment --- gelatin structure --- crosslinking degree --- dendrimer --- metallodendrimer --- acridine --- antimicrobial activity --- antibacterial cotton --- polystyrene --- nylon 6 --- electrospun fibers --- composite mesh --- proliferation --- roughness --- Ti6Al4V --- polydopamine --- antimicrobial peptides --- cathelicidin --- KR-12 --- polyhydroxyalkanoates --- oligo(3-hydroxy-3-(4-methoxybenzoyloxymethyl)propionate) --- bioactive (co)oligoesters --- p-anisic acid derivatives --- hydrolytic degradation --- cosmetic delivery system --- ESI-MS --- multistage mass spectrometry --- whey protein isolate --- hydrogel --- tannic acid --- anticancer scaffold --- 3D printing --- fused deposition modelling (FDM) --- computer aided design (CAD) --- erosion test --- dissolution study --- dynamic light scattering (DLS) --- poly(2-isopropenyl-2-oxazoline) --- immunomodulation --- cytokines --- RAW 264.7 --- phagocytosis --- cell internalization --- antifungal --- thymoquinone --- ocimene --- miramistin amphotericin b --- bacterial cellulose --- wound dressing
Choose an application
Significant research efforts are currently being undertaken in the field of natural and synthetic polymers for a range of biomedical applications. (Co)polymer molecular structure, topology, self-assemblies, biodegradation, and hydrophobicity are of biomaterial importance for intrinsically biocompatible polymer systems. This book is comprised of nine chapters, published previously as original research contributions of the Special Issue focused on advances in polymeric materials for biomedical applications. The authors of these contributions are predominantly from central European countries, Italy and the United Kingdom. The content of this book will be of interest to scientists, scholars and students working in this area of knowledge, reflecting the progress in the development of advanced natural and synthetic polymer biomaterials.
fish gelatin --- citric acid --- electrospinning --- pH --- thermal treatment --- gelatin structure --- crosslinking degree --- dendrimer --- metallodendrimer --- acridine --- antimicrobial activity --- antibacterial cotton --- polystyrene --- nylon 6 --- electrospun fibers --- composite mesh --- proliferation --- roughness --- Ti6Al4V --- polydopamine --- antimicrobial peptides --- cathelicidin --- KR-12 --- polyhydroxyalkanoates --- oligo(3-hydroxy-3-(4-methoxybenzoyloxymethyl)propionate) --- bioactive (co)oligoesters --- p-anisic acid derivatives --- hydrolytic degradation --- cosmetic delivery system --- ESI-MS --- multistage mass spectrometry --- whey protein isolate --- hydrogel --- tannic acid --- anticancer scaffold --- 3D printing --- fused deposition modelling (FDM) --- computer aided design (CAD) --- erosion test --- dissolution study --- dynamic light scattering (DLS) --- poly(2-isopropenyl-2-oxazoline) --- immunomodulation --- cytokines --- RAW 264.7 --- phagocytosis --- cell internalization --- antifungal --- thymoquinone --- ocimene --- miramistin amphotericin b --- bacterial cellulose --- wound dressing
Choose an application
Significant research efforts are currently being undertaken in the field of natural and synthetic polymers for a range of biomedical applications. (Co)polymer molecular structure, topology, self-assemblies, biodegradation, and hydrophobicity are of biomaterial importance for intrinsically biocompatible polymer systems. This book is comprised of nine chapters, published previously as original research contributions of the Special Issue focused on advances in polymeric materials for biomedical applications. The authors of these contributions are predominantly from central European countries, Italy and the United Kingdom. The content of this book will be of interest to scientists, scholars and students working in this area of knowledge, reflecting the progress in the development of advanced natural and synthetic polymer biomaterials.
Technology: general issues --- fish gelatin --- citric acid --- electrospinning --- pH --- thermal treatment --- gelatin structure --- crosslinking degree --- dendrimer --- metallodendrimer --- acridine --- antimicrobial activity --- antibacterial cotton --- polystyrene --- nylon 6 --- electrospun fibers --- composite mesh --- proliferation --- roughness --- Ti6Al4V --- polydopamine --- antimicrobial peptides --- cathelicidin --- KR-12 --- polyhydroxyalkanoates --- oligo(3-hydroxy-3-(4-methoxybenzoyloxymethyl)propionate) --- bioactive (co)oligoesters --- p-anisic acid derivatives --- hydrolytic degradation --- cosmetic delivery system --- ESI-MS --- multistage mass spectrometry --- whey protein isolate --- hydrogel --- tannic acid --- anticancer scaffold --- 3D printing --- fused deposition modelling (FDM) --- computer aided design (CAD) --- erosion test --- dissolution study --- dynamic light scattering (DLS) --- poly(2-isopropenyl-2-oxazoline) --- immunomodulation --- cytokines --- RAW 264.7 --- phagocytosis --- cell internalization --- antifungal --- thymoquinone --- ocimene --- miramistin amphotericin b --- bacterial cellulose --- wound dressing --- fish gelatin --- citric acid --- electrospinning --- pH --- thermal treatment --- gelatin structure --- crosslinking degree --- dendrimer --- metallodendrimer --- acridine --- antimicrobial activity --- antibacterial cotton --- polystyrene --- nylon 6 --- electrospun fibers --- composite mesh --- proliferation --- roughness --- Ti6Al4V --- polydopamine --- antimicrobial peptides --- cathelicidin --- KR-12 --- polyhydroxyalkanoates --- oligo(3-hydroxy-3-(4-methoxybenzoyloxymethyl)propionate) --- bioactive (co)oligoesters --- p-anisic acid derivatives --- hydrolytic degradation --- cosmetic delivery system --- ESI-MS --- multistage mass spectrometry --- whey protein isolate --- hydrogel --- tannic acid --- anticancer scaffold --- 3D printing --- fused deposition modelling (FDM) --- computer aided design (CAD) --- erosion test --- dissolution study --- dynamic light scattering (DLS) --- poly(2-isopropenyl-2-oxazoline) --- immunomodulation --- cytokines --- RAW 264.7 --- phagocytosis --- cell internalization --- antifungal --- thymoquinone --- ocimene --- miramistin amphotericin b --- bacterial cellulose --- wound dressing
Choose an application
Additive manufacturing technology offers the ability to produce personalized products with lower development costs, shorter lead times, less energy consumed during manufacturing and less material waste. It can be used to manufacture complex parts and enables manufacturers to reduce their inventory, make products on-demand, create smaller and localized manufacturing environments, and even reduce supply chains. Additive manufacturing (AM), also known as fabricating three-dimensional (3D) and four-dimensional (4D) components, refers to processes that allow for the direct fabrication of physical products from computer-aided design (CAD) models through the repetitious deposition of material layers. Compared with traditional manufacturing processes, AM allows the production of customized parts from bio- and synthetic polymers without the need for molds or machining typical for conventional formative and subtractive fabrication.In this Special Issue, we aimed to capture the cutting-edge state-of-the-art research pertaining to advancing the additive manufacturing of polymeric materials. The topic themes include advanced polymeric material development, processing parameter optimization, characterization techniques, structure–property relationships, process modelling, etc., specifically for AM.
Technology: general issues --- History of engineering & technology --- polylactic acid (PLA) --- natural fibres --- biocomposite --- mechanical properties --- thermoplastic starch --- biopolymer --- composite --- food packaging --- pitch --- polyethylene --- carbon fibres --- extrusion --- blend --- antimicrobial --- antibacterial --- 3D printing --- fused filament fabrication --- composite material --- fused-filament fabrication --- mechanical strength --- naked mole-rat algorithm --- optimization --- process parameters --- bio-based polyethylene composite --- X-ray tomography --- CNT --- MWCNT --- non-covalent functionalisation --- polythiophene --- P3HT --- reaction time --- natural fiber composite --- product design --- sustainability design --- design process --- epoxidized jatropha oil --- shape memory polymer --- bio-based polymer --- jatropha oil --- ABS --- fatigue --- thermo-mechanical loads --- building orientation --- nozzle size --- layer thickness --- drug delivery --- biodegradable polymers --- polymeric scaffolds --- natural bioactive polymers --- antimicrobial properties --- anticancer activity --- tissue engineering --- lattice material --- flexible TPU --- internal architecture --- minimum ignition temperature of dispersed dust --- dust explosion --- dust cloud --- polyamide 12 --- additive technologies --- kenaf fibre --- fibre treatment --- thermal properties --- Fused Deposition Modelling (FDM) --- silver nanopowder --- kenaf --- high-density polyethylene
Choose an application
Additive manufacturing technology offers the ability to produce personalized products with lower development costs, shorter lead times, less energy consumed during manufacturing and less material waste. It can be used to manufacture complex parts and enables manufacturers to reduce their inventory, make products on-demand, create smaller and localized manufacturing environments, and even reduce supply chains. Additive manufacturing (AM), also known as fabricating three-dimensional (3D) and four-dimensional (4D) components, refers to processes that allow for the direct fabrication of physical products from computer-aided design (CAD) models through the repetitious deposition of material layers. Compared with traditional manufacturing processes, AM allows the production of customized parts from bio- and synthetic polymers without the need for molds or machining typical for conventional formative and subtractive fabrication.In this Special Issue, we aimed to capture the cutting-edge state-of-the-art research pertaining to advancing the additive manufacturing of polymeric materials. The topic themes include advanced polymeric material development, processing parameter optimization, characterization techniques, structure–property relationships, process modelling, etc., specifically for AM.
polylactic acid (PLA) --- natural fibres --- biocomposite --- mechanical properties --- thermoplastic starch --- biopolymer --- composite --- food packaging --- pitch --- polyethylene --- carbon fibres --- extrusion --- blend --- antimicrobial --- antibacterial --- 3D printing --- fused filament fabrication --- composite material --- fused-filament fabrication --- mechanical strength --- naked mole-rat algorithm --- optimization --- process parameters --- bio-based polyethylene composite --- X-ray tomography --- CNT --- MWCNT --- non-covalent functionalisation --- polythiophene --- P3HT --- reaction time --- natural fiber composite --- product design --- sustainability design --- design process --- epoxidized jatropha oil --- shape memory polymer --- bio-based polymer --- jatropha oil --- ABS --- fatigue --- thermo-mechanical loads --- building orientation --- nozzle size --- layer thickness --- drug delivery --- biodegradable polymers --- polymeric scaffolds --- natural bioactive polymers --- antimicrobial properties --- anticancer activity --- tissue engineering --- lattice material --- flexible TPU --- internal architecture --- minimum ignition temperature of dispersed dust --- dust explosion --- dust cloud --- polyamide 12 --- additive technologies --- kenaf fibre --- fibre treatment --- thermal properties --- Fused Deposition Modelling (FDM) --- silver nanopowder --- kenaf --- high-density polyethylene
Choose an application
Additive manufacturing technology offers the ability to produce personalized products with lower development costs, shorter lead times, less energy consumed during manufacturing and less material waste. It can be used to manufacture complex parts and enables manufacturers to reduce their inventory, make products on-demand, create smaller and localized manufacturing environments, and even reduce supply chains. Additive manufacturing (AM), also known as fabricating three-dimensional (3D) and four-dimensional (4D) components, refers to processes that allow for the direct fabrication of physical products from computer-aided design (CAD) models through the repetitious deposition of material layers. Compared with traditional manufacturing processes, AM allows the production of customized parts from bio- and synthetic polymers without the need for molds or machining typical for conventional formative and subtractive fabrication.In this Special Issue, we aimed to capture the cutting-edge state-of-the-art research pertaining to advancing the additive manufacturing of polymeric materials. The topic themes include advanced polymeric material development, processing parameter optimization, characterization techniques, structure–property relationships, process modelling, etc., specifically for AM.
Technology: general issues --- History of engineering & technology --- polylactic acid (PLA) --- natural fibres --- biocomposite --- mechanical properties --- thermoplastic starch --- biopolymer --- composite --- food packaging --- pitch --- polyethylene --- carbon fibres --- extrusion --- blend --- antimicrobial --- antibacterial --- 3D printing --- fused filament fabrication --- composite material --- fused-filament fabrication --- mechanical strength --- naked mole-rat algorithm --- optimization --- process parameters --- bio-based polyethylene composite --- X-ray tomography --- CNT --- MWCNT --- non-covalent functionalisation --- polythiophene --- P3HT --- reaction time --- natural fiber composite --- product design --- sustainability design --- design process --- epoxidized jatropha oil --- shape memory polymer --- bio-based polymer --- jatropha oil --- ABS --- fatigue --- thermo-mechanical loads --- building orientation --- nozzle size --- layer thickness --- drug delivery --- biodegradable polymers --- polymeric scaffolds --- natural bioactive polymers --- antimicrobial properties --- anticancer activity --- tissue engineering --- lattice material --- flexible TPU --- internal architecture --- minimum ignition temperature of dispersed dust --- dust explosion --- dust cloud --- polyamide 12 --- additive technologies --- kenaf fibre --- fibre treatment --- thermal properties --- Fused Deposition Modelling (FDM) --- silver nanopowder --- kenaf --- high-density polyethylene --- polylactic acid (PLA) --- natural fibres --- biocomposite --- mechanical properties --- thermoplastic starch --- biopolymer --- composite --- food packaging --- pitch --- polyethylene --- carbon fibres --- extrusion --- blend --- antimicrobial --- antibacterial --- 3D printing --- fused filament fabrication --- composite material --- fused-filament fabrication --- mechanical strength --- naked mole-rat algorithm --- optimization --- process parameters --- bio-based polyethylene composite --- X-ray tomography --- CNT --- MWCNT --- non-covalent functionalisation --- polythiophene --- P3HT --- reaction time --- natural fiber composite --- product design --- sustainability design --- design process --- epoxidized jatropha oil --- shape memory polymer --- bio-based polymer --- jatropha oil --- ABS --- fatigue --- thermo-mechanical loads --- building orientation --- nozzle size --- layer thickness --- drug delivery --- biodegradable polymers --- polymeric scaffolds --- natural bioactive polymers --- antimicrobial properties --- anticancer activity --- tissue engineering --- lattice material --- flexible TPU --- internal architecture --- minimum ignition temperature of dispersed dust --- dust explosion --- dust cloud --- polyamide 12 --- additive technologies --- kenaf fibre --- fibre treatment --- thermal properties --- Fused Deposition Modelling (FDM) --- silver nanopowder --- kenaf --- high-density polyethylene
Listing 1 - 6 of 6 |
Sort by
|