Listing 1 - 10 of 13 | << page >> |
Sort by
|
Choose an application
Structural testing and assessment, process monitoring, and material characterization are three broad application areas of acoustic emission (AE) techniques. Quantitative and qualitative characteristics of AE waves have been studied widely in the literature. This book reviews major research developments in the application of AE in numerous engineering fields. It brings together important contributions from renowned international researchers to provide an excellent survey of new perspectives and paradigms of AE. In particular, this book presents applications of AE in cracking and damage assessment in metal beams, asphalt pavements, and composite materials as well as studying noise mitigation in wind turbines and cylindrical shells.
Choose an application
Structural testing and assessment, process monitoring, and material characterization are three broad application areas of acoustic emission (AE) techniques. Quantitative and qualitative characteristics of AE waves have been studied widely in the literature. This book reviews major research developments in the application of AE in numerous engineering fields. It brings together important contributions from renowned international researchers to provide an excellent survey of new perspectives and paradigms of AE. In particular, this book presents applications of AE in cracking and damage assessment in metal beams, asphalt pavements, and composite materials as well as studying noise mitigation in wind turbines and cylindrical shells.
Choose an application
Structural testing and assessment, process monitoring, and material characterization are three broad application areas of acoustic emission (AE) techniques. Quantitative and qualitative characteristics of AE waves have been studied widely in the literature. This book reviews major research developments in the application of AE in numerous engineering fields. It brings together important contributions from renowned international researchers to provide an excellent survey of new perspectives and paradigms of AE. In particular, this book presents applications of AE in cracking and damage assessment in metal beams, asphalt pavements, and composite materials as well as studying noise mitigation in wind turbines and cylindrical shells.
Choose an application
Choose an application
Acoustic emission. --- Acoustic emission testing. --- Acoustic monitoring (Nondestructive testing) --- Nondestructive testing --- Emission, Acoustic --- Acoustical engineering --- Materials --- Stress waves --- Testing
Choose an application
Acoustic emission testing. --- Fracture mechanics. --- Failure of solids --- Fracture of materials --- Fracture of solids --- Materials --- Mechanics, Fracture --- Solids --- Deformations (Mechanics) --- Strength of materials --- Brittleness --- Penetration mechanics --- Structural failures --- Acoustic monitoring (Nondestructive testing) --- Nondestructive testing --- Fracture --- Fatigue
Choose an application
The book presents topical theoretical and experimental studies for developing advanced methods of detecting materials fracture and assessing their structural state using acoustic emission. It introduces new mathematical models characterizing the displacement fields arising from crack-like defects and establishes a new criterion for classifying different types of materials fracture based on specific parameters obtained from wavelet transforms of acoustic emission signals. The book applies this approach to experimental studies in three types of materials—fiber-reinforced composites, dental materials, and hydrogen-embrittled steels.
Acoustic emission testing. --- Fracture mechanics. --- Failure of solids --- Fracture of materials --- Fracture of solids --- Materials --- Mechanics, Fracture --- Solids --- Deformations (Mechanics) --- Strength of materials --- Brittleness --- Penetration mechanics --- Structural failures --- Acoustic monitoring (Nondestructive testing) --- Nondestructive testing --- Fracture --- Fatigue --- Building materials. --- Acoustics. --- Continuum mechanics. --- Structural Materials. --- Materials Fatigue. --- Materials Characterization Technique. --- Continuum Mechanics. --- Fatigue. --- Analysis. --- Mechanics of continua --- Elasticity --- Mechanics, Analytic --- Field theory (Physics) --- Fatigue of materials --- Fatigue testing --- Fracture mechanics --- Strains and stresses --- Vibration --- Architectural materials --- Architecture --- Building --- Building supplies --- Buildings --- Construction materials --- Structural materials --- Dynamic testing --- Testing
Choose an application
This Special Issue consists of selected papers from the Experimental Stress Analysis 2020 conference. Experimental Stress Analysis 2020 was organized with the support of the Czech Society for Mechanics, Expert Group of Experimental Mechanics, and was, for this particular year, held online in 19–22 October 2020. The objectives of the conference included identification of current situation, sharing professional experience and knowledge, discussing new theoretical and practical findings, and the establishment and strengthening of relationships between universities, companies, and scientists from the field of experimental mechanics in mechanical and civil engineering. The topics of the conference were focused on experimental research on materials and structures subjected to mechanical, thermal–mechanical, and dynamic loading, including damage, fatigue, and fracture analyses. The selected papers deal with top-level contemporary phenomena, such as modern durable materials, numerical modeling and simulations, and innovative non-destructive materials’ testing.
Technology: general issues --- History of engineering & technology --- residual stresses --- neutron diffraction --- three axis setting --- high resolution --- bent crystal monochromator --- bent crystal analyzer --- stainless steel 316L --- additive manufacturing --- multiaxial loading --- plasticity --- digital image correlation method --- hill yield criterion --- isotropic hardening --- finite element method (FEM) --- straightening process --- three-point bending --- FEM --- control strategy --- billet straightening --- multiaxial fatigue --- high-cycle fatigue --- multiaxial fatigue experiments --- S-N curve approximation --- laser welding --- pressure vessel steel --- microstructure --- X-ray and neutron diffraction --- high-cycle fatigue tests --- wearable --- flexible --- structure --- stiffness --- biomedical --- mechanics --- simulation --- pattern --- 3D print --- PA12 --- tram --- pedestrian --- crash --- windshield model --- HIC --- hole-drilling --- PhotoStress --- digital image correlation --- experimental analysis --- finite element analysis --- composite --- thermoplastic --- interlaminar strength --- polyphenylensulfid --- polyetheretherketone --- polyaryletherketone --- curved beam --- NDE --- infrared thermography --- Infrared Nondestructive Testing --- CFRP --- Anand material model --- material parameters --- ABS-M30 --- indentation test --- genetic algorithm --- acoustic emission --- CFRP composite tube --- unsupervised learning approach --- failure mechanism --- n/a
Choose an application
This Special Issue consists of selected papers from the Experimental Stress Analysis 2020 conference. Experimental Stress Analysis 2020 was organized with the support of the Czech Society for Mechanics, Expert Group of Experimental Mechanics, and was, for this particular year, held online in 19–22 October 2020. The objectives of the conference included identification of current situation, sharing professional experience and knowledge, discussing new theoretical and practical findings, and the establishment and strengthening of relationships between universities, companies, and scientists from the field of experimental mechanics in mechanical and civil engineering. The topics of the conference were focused on experimental research on materials and structures subjected to mechanical, thermal–mechanical, and dynamic loading, including damage, fatigue, and fracture analyses. The selected papers deal with top-level contemporary phenomena, such as modern durable materials, numerical modeling and simulations, and innovative non-destructive materials’ testing.
residual stresses --- neutron diffraction --- three axis setting --- high resolution --- bent crystal monochromator --- bent crystal analyzer --- stainless steel 316L --- additive manufacturing --- multiaxial loading --- plasticity --- digital image correlation method --- hill yield criterion --- isotropic hardening --- finite element method (FEM) --- straightening process --- three-point bending --- FEM --- control strategy --- billet straightening --- multiaxial fatigue --- high-cycle fatigue --- multiaxial fatigue experiments --- S-N curve approximation --- laser welding --- pressure vessel steel --- microstructure --- X-ray and neutron diffraction --- high-cycle fatigue tests --- wearable --- flexible --- structure --- stiffness --- biomedical --- mechanics --- simulation --- pattern --- 3D print --- PA12 --- tram --- pedestrian --- crash --- windshield model --- HIC --- hole-drilling --- PhotoStress --- digital image correlation --- experimental analysis --- finite element analysis --- composite --- thermoplastic --- interlaminar strength --- polyphenylensulfid --- polyetheretherketone --- polyaryletherketone --- curved beam --- NDE --- infrared thermography --- Infrared Nondestructive Testing --- CFRP --- Anand material model --- material parameters --- ABS-M30 --- indentation test --- genetic algorithm --- acoustic emission --- CFRP composite tube --- unsupervised learning approach --- failure mechanism --- n/a
Choose an application
This Special Issue consists of selected papers from the Experimental Stress Analysis 2020 conference. Experimental Stress Analysis 2020 was organized with the support of the Czech Society for Mechanics, Expert Group of Experimental Mechanics, and was, for this particular year, held online in 19–22 October 2020. The objectives of the conference included identification of current situation, sharing professional experience and knowledge, discussing new theoretical and practical findings, and the establishment and strengthening of relationships between universities, companies, and scientists from the field of experimental mechanics in mechanical and civil engineering. The topics of the conference were focused on experimental research on materials and structures subjected to mechanical, thermal–mechanical, and dynamic loading, including damage, fatigue, and fracture analyses. The selected papers deal with top-level contemporary phenomena, such as modern durable materials, numerical modeling and simulations, and innovative non-destructive materials’ testing.
Technology: general issues --- History of engineering & technology --- residual stresses --- neutron diffraction --- three axis setting --- high resolution --- bent crystal monochromator --- bent crystal analyzer --- stainless steel 316L --- additive manufacturing --- multiaxial loading --- plasticity --- digital image correlation method --- hill yield criterion --- isotropic hardening --- finite element method (FEM) --- straightening process --- three-point bending --- FEM --- control strategy --- billet straightening --- multiaxial fatigue --- high-cycle fatigue --- multiaxial fatigue experiments --- S-N curve approximation --- laser welding --- pressure vessel steel --- microstructure --- X-ray and neutron diffraction --- high-cycle fatigue tests --- wearable --- flexible --- structure --- stiffness --- biomedical --- mechanics --- simulation --- pattern --- 3D print --- PA12 --- tram --- pedestrian --- crash --- windshield model --- HIC --- hole-drilling --- PhotoStress --- digital image correlation --- experimental analysis --- finite element analysis --- composite --- thermoplastic --- interlaminar strength --- polyphenylensulfid --- polyetheretherketone --- polyaryletherketone --- curved beam --- NDE --- infrared thermography --- Infrared Nondestructive Testing --- CFRP --- Anand material model --- material parameters --- ABS-M30 --- indentation test --- genetic algorithm --- acoustic emission --- CFRP composite tube --- unsupervised learning approach --- failure mechanism --- residual stresses --- neutron diffraction --- three axis setting --- high resolution --- bent crystal monochromator --- bent crystal analyzer --- stainless steel 316L --- additive manufacturing --- multiaxial loading --- plasticity --- digital image correlation method --- hill yield criterion --- isotropic hardening --- finite element method (FEM) --- straightening process --- three-point bending --- FEM --- control strategy --- billet straightening --- multiaxial fatigue --- high-cycle fatigue --- multiaxial fatigue experiments --- S-N curve approximation --- laser welding --- pressure vessel steel --- microstructure --- X-ray and neutron diffraction --- high-cycle fatigue tests --- wearable --- flexible --- structure --- stiffness --- biomedical --- mechanics --- simulation --- pattern --- 3D print --- PA12 --- tram --- pedestrian --- crash --- windshield model --- HIC --- hole-drilling --- PhotoStress --- digital image correlation --- experimental analysis --- finite element analysis --- composite --- thermoplastic --- interlaminar strength --- polyphenylensulfid --- polyetheretherketone --- polyaryletherketone --- curved beam --- NDE --- infrared thermography --- Infrared Nondestructive Testing --- CFRP --- Anand material model --- material parameters --- ABS-M30 --- indentation test --- genetic algorithm --- acoustic emission --- CFRP composite tube --- unsupervised learning approach --- failure mechanism
Listing 1 - 10 of 13 | << page >> |
Sort by
|