Listing 1 - 9 of 9 |
Sort by
|
Choose an application
The Special Issue "Computational Intelligence Application in Electrical Engineering" deals with the application of computational intelligence techniques in various areas of electrical engineering. The topics of computational intelligence applications in smart power grid optimization, power distribution system protection, and electrical machine design and control optimization are presented in the Special Issue. The co-simulation approach to metaheuristic optimization methods and simulation tools for a power system analysis are also presented. The main computational intelligence techniques, evolutionary optimization, fuzzy inference system, and an artificial neural network are used in the research presented in the Special Issue. The articles published in this issue present the recent trends in computational intelligence applications in the areas of electrical engineering.
Technology: general issues --- History of engineering & technology --- active distribution network --- computational intelligence --- optimization algorithms --- optimal distribution system management --- optimal Smart Grid management --- advanced distribution system optimization --- renewable distributed generation --- Smart Grid optimization --- co-simulation --- computational intelligence techniques --- distributed generation --- optimal allocation and control --- power system protection --- overcurrent relays --- protection relays --- metaheuristic --- school-based optimizer --- electric markets --- photovoltaic generation --- Monte Carlo simulations --- power flow --- S-iteration process --- Newton–Raphson --- high order newton-like method --- computational efficiency --- line-start synchronous motor --- efficiency factor --- power factor --- optometric analysis --- transient models --- induction machine --- ant colony optimization --- predictive current control --- fuzzy logic control --- Takagi–Sugeno --- n/a --- Newton-Raphson --- Takagi-Sugeno
Choose an application
The Special Issue "Computational Intelligence Application in Electrical Engineering" deals with the application of computational intelligence techniques in various areas of electrical engineering. The topics of computational intelligence applications in smart power grid optimization, power distribution system protection, and electrical machine design and control optimization are presented in the Special Issue. The co-simulation approach to metaheuristic optimization methods and simulation tools for a power system analysis are also presented. The main computational intelligence techniques, evolutionary optimization, fuzzy inference system, and an artificial neural network are used in the research presented in the Special Issue. The articles published in this issue present the recent trends in computational intelligence applications in the areas of electrical engineering.
active distribution network --- computational intelligence --- optimization algorithms --- optimal distribution system management --- optimal Smart Grid management --- advanced distribution system optimization --- renewable distributed generation --- Smart Grid optimization --- co-simulation --- computational intelligence techniques --- distributed generation --- optimal allocation and control --- power system protection --- overcurrent relays --- protection relays --- metaheuristic --- school-based optimizer --- electric markets --- photovoltaic generation --- Monte Carlo simulations --- power flow --- S-iteration process --- Newton–Raphson --- high order newton-like method --- computational efficiency --- line-start synchronous motor --- efficiency factor --- power factor --- optometric analysis --- transient models --- induction machine --- ant colony optimization --- predictive current control --- fuzzy logic control --- Takagi–Sugeno --- n/a --- Newton-Raphson --- Takagi-Sugeno
Choose an application
The deployment of distributed renewable energy resources (DRERs) has accelerated globally due to environmental concerns and an increasing demand for electricity. DRERs are considered to be solutions to some of the current challenges related to power grids, such as reliability, resilience, efficiency, and flexibility. However, there are still several technical and non-technical challenges regarding the deployment of distributed renewable energy resources. Technical concerns associated with the integration and control of DRERs include, but are not limited, to optimal sizing and placement, optimal operation in grid-connected and islanded modes, as well as the impact of these resources on power quality, power system security, stability, and protection systems. On the other hand, non-technical challenges can be classified into three categories—regulatory issues, social issues, and economic issues. This Special Issue will address all aspects related to the integration and control of distributed renewable energy resources. It aims to understand the existing challenges and explore new solutions and practices for use in overcoming technical challenges.
distribution system --- microgrids --- power quality --- power system management --- power system reliability --- smart grids --- distribution networks --- Monte Carlo simulations --- PV hosting capacity --- photovoltaics --- green communities --- energy independence --- HOMER --- wind turbines --- power losses --- power system optimization --- PV curves --- DG --- TSA/SCA --- solar-powered electric vehicle parking lots --- different PV technologies --- PLO’s profit --- uncertainties --- smart grid paradigm --- distributed generation --- model-based predictive control --- robustness --- worst-case scenario --- min–max optimisation --- intraday forecasting --- Gaussian process regression --- machine learning --- off-grid system --- composite control strategy --- solar photovoltaic panel --- wind turbine --- diesel generator --- energy storage system (ESS) --- synchronous machine (SM) --- permanent magnet brushless DC machine (PMBLDCM) --- power quality improvement --- n/a --- PLO's profit --- min-max optimisation
Choose an application
The Special Issue "Computational Intelligence Application in Electrical Engineering" deals with the application of computational intelligence techniques in various areas of electrical engineering. The topics of computational intelligence applications in smart power grid optimization, power distribution system protection, and electrical machine design and control optimization are presented in the Special Issue. The co-simulation approach to metaheuristic optimization methods and simulation tools for a power system analysis are also presented. The main computational intelligence techniques, evolutionary optimization, fuzzy inference system, and an artificial neural network are used in the research presented in the Special Issue. The articles published in this issue present the recent trends in computational intelligence applications in the areas of electrical engineering.
Technology: general issues --- History of engineering & technology --- active distribution network --- computational intelligence --- optimization algorithms --- optimal distribution system management --- optimal Smart Grid management --- advanced distribution system optimization --- renewable distributed generation --- Smart Grid optimization --- co-simulation --- computational intelligence techniques --- distributed generation --- optimal allocation and control --- power system protection --- overcurrent relays --- protection relays --- metaheuristic --- school-based optimizer --- electric markets --- photovoltaic generation --- Monte Carlo simulations --- power flow --- S-iteration process --- Newton-Raphson --- high order newton-like method --- computational efficiency --- line-start synchronous motor --- efficiency factor --- power factor --- optometric analysis --- transient models --- induction machine --- ant colony optimization --- predictive current control --- fuzzy logic control --- Takagi-Sugeno
Choose an application
The deployment of distributed renewable energy resources (DRERs) has accelerated globally due to environmental concerns and an increasing demand for electricity. DRERs are considered to be solutions to some of the current challenges related to power grids, such as reliability, resilience, efficiency, and flexibility. However, there are still several technical and non-technical challenges regarding the deployment of distributed renewable energy resources. Technical concerns associated with the integration and control of DRERs include, but are not limited, to optimal sizing and placement, optimal operation in grid-connected and islanded modes, as well as the impact of these resources on power quality, power system security, stability, and protection systems. On the other hand, non-technical challenges can be classified into three categories—regulatory issues, social issues, and economic issues. This Special Issue will address all aspects related to the integration and control of distributed renewable energy resources. It aims to understand the existing challenges and explore new solutions and practices for use in overcoming technical challenges.
Technology: general issues --- History of engineering & technology --- distribution system --- microgrids --- power quality --- power system management --- power system reliability --- smart grids --- distribution networks --- Monte Carlo simulations --- PV hosting capacity --- photovoltaics --- green communities --- energy independence --- HOMER --- wind turbines --- power losses --- power system optimization --- PV curves --- DG --- TSA/SCA --- solar-powered electric vehicle parking lots --- different PV technologies --- PLO's profit --- uncertainties --- smart grid paradigm --- distributed generation --- model-based predictive control --- robustness --- worst-case scenario --- min-max optimisation --- intraday forecasting --- Gaussian process regression --- machine learning --- off-grid system --- composite control strategy --- solar photovoltaic panel --- wind turbine --- diesel generator --- energy storage system (ESS) --- synchronous machine (SM) --- permanent magnet brushless DC machine (PMBLDCM) --- power quality improvement
Choose an application
The deployment of distributed renewable energy resources (DRERs) has accelerated globally due to environmental concerns and an increasing demand for electricity. DRERs are considered to be solutions to some of the current challenges related to power grids, such as reliability, resilience, efficiency, and flexibility. However, there are still several technical and non-technical challenges regarding the deployment of distributed renewable energy resources. Technical concerns associated with the integration and control of DRERs include, but are not limited, to optimal sizing and placement, optimal operation in grid-connected and islanded modes, as well as the impact of these resources on power quality, power system security, stability, and protection systems. On the other hand, non-technical challenges can be classified into three categories—regulatory issues, social issues, and economic issues. This Special Issue will address all aspects related to the integration and control of distributed renewable energy resources. It aims to understand the existing challenges and explore new solutions and practices for use in overcoming technical challenges.
Technology: general issues --- History of engineering & technology --- distribution system --- microgrids --- power quality --- power system management --- power system reliability --- smart grids --- distribution networks --- Monte Carlo simulations --- PV hosting capacity --- photovoltaics --- green communities --- energy independence --- HOMER --- wind turbines --- power losses --- power system optimization --- PV curves --- DG --- TSA/SCA --- solar-powered electric vehicle parking lots --- different PV technologies --- PLO’s profit --- uncertainties --- smart grid paradigm --- distributed generation --- model-based predictive control --- robustness --- worst-case scenario --- min–max optimisation --- intraday forecasting --- Gaussian process regression --- machine learning --- off-grid system --- composite control strategy --- solar photovoltaic panel --- wind turbine --- diesel generator --- energy storage system (ESS) --- synchronous machine (SM) --- permanent magnet brushless DC machine (PMBLDCM) --- power quality improvement --- n/a --- PLO's profit --- min-max optimisation
Choose an application
Polymers are the largest and most versatile class of biomaterials, being extensively applied for therapeutic applications. From natural to synthetic polymers, the possibilities to design and modify their physical-chemical properties make these systems of great interest in a wide range of biomedical applications as diverse as drug delivery systems, organ-on-a-chip, diagnostics, tissue engineering, and so on.In recent years, advances in the synthesis and modification of polymers and characterization techniques have allowed the design of novel biomaterials as well as the study of their biological behavior in vitro and in vivo.The purpose of this Special Issue is to highlight recent achievements in the synthesis and modification of polymers for biomedical applications for final applications in the field of biomedicine.
Technology: general issues --- Biotechnology --- biocomposite --- chitosan --- chlorhexidine --- coating --- hernia --- mesh infection --- nanoparticles --- PLGA --- polypropylene --- rifampicin --- 3D-bioprinting --- static mixer --- reactive hydrogel --- hyaluronic acid --- modified chitosan --- curcumin --- microwave --- interpenetrated polymer network --- semi-IPN --- methacrylated hyaluronic acid --- glycerylphytate --- mesenchymal stem cell --- bioadhesion --- biomaterials --- biomedical application --- healthcare system management --- innovation --- polymer based bioadhesive --- polymers --- magnetite nanoparticles --- Tween 80 --- synthesis --- nanotoxicology --- genotoxicity --- hemotoxicity --- soy protein --- film --- semiconductor --- biomaterial --- additive manufacturing --- sterilization --- medical devices --- bioabsorbable --- polymer --- biopolymer --- hydrogel --- microparticles --- dye release --- drug delivery system --- dual-responsiveness --- dendritic polyglycerol sulfates --- biofabrication --- microfluidics --- electrospinning --- 3D printing --- electrospraying --- natural polymers --- cell encapsulation --- polymeric prodrug --- dual-sensitive --- combination chemotherapy --- drug conjugation --- dextran --- hydrogels --- carboxymethyl cellulose --- succinoglycan --- metal coordination --- drug delivery --- swelling properties --- extracellular matrix --- external stimuli --- tissue maturation --- gelatin --- sodium carboxymethyl cellulose --- scaffold --- A549 cells --- freeze drying --- silicone rubber --- biomechanical --- hyper-elastic --- constitutive model --- FEA --- pH-sensitive hydrogel --- poly(acrylic acid) --- quartz crystal microbalance (QCM) --- ellipsometric measurement --- antibacterial activity --- Ganoderma lucidum --- polysaccharides --- cisplatin --- synergistic effect --- anti-lung cancer --- nanocellulose fiber --- low methoxyl pectin --- sodium alginate --- clindamycin --- pancreatic cancer --- gemcitabine --- controlled release --- non-woven sheet --- chemotherapy --- antitumor efficacy --- poly(L-lactic acid) --- antimicrobials agents --- amphiphilic block copolymer --- quaternized polymer --- hemolysis --- micelle --- black phosphorus --- polyetheretherketone --- lubrication properties --- antibacterial properties --- sensorineural hearing loss --- cochlear implants --- self-bending electrode arrays --- silicone rubber–hydrogel composites --- actuators --- swelling behavior --- curvature --- biocompatibility --- nanofibrous dura mater --- antifibrosis --- neuroprotection --- tetramethylpyrazine
Choose an application
Polymers are the largest and most versatile class of biomaterials, being extensively applied for therapeutic applications. From natural to synthetic polymers, the possibilities to design and modify their physical-chemical properties make these systems of great interest in a wide range of biomedical applications as diverse as drug delivery systems, organ-on-a-chip, diagnostics, tissue engineering, and so on.In recent years, advances in the synthesis and modification of polymers and characterization techniques have allowed the design of novel biomaterials as well as the study of their biological behavior in vitro and in vivo.The purpose of this Special Issue is to highlight recent achievements in the synthesis and modification of polymers for biomedical applications for final applications in the field of biomedicine.
biocomposite --- chitosan --- chlorhexidine --- coating --- hernia --- mesh infection --- nanoparticles --- PLGA --- polypropylene --- rifampicin --- 3D-bioprinting --- static mixer --- reactive hydrogel --- hyaluronic acid --- modified chitosan --- curcumin --- microwave --- interpenetrated polymer network --- semi-IPN --- methacrylated hyaluronic acid --- glycerylphytate --- mesenchymal stem cell --- bioadhesion --- biomaterials --- biomedical application --- healthcare system management --- innovation --- polymer based bioadhesive --- polymers --- magnetite nanoparticles --- Tween 80 --- synthesis --- nanotoxicology --- genotoxicity --- hemotoxicity --- soy protein --- film --- semiconductor --- biomaterial --- additive manufacturing --- sterilization --- medical devices --- bioabsorbable --- polymer --- biopolymer --- hydrogel --- microparticles --- dye release --- drug delivery system --- dual-responsiveness --- dendritic polyglycerol sulfates --- biofabrication --- microfluidics --- electrospinning --- 3D printing --- electrospraying --- natural polymers --- cell encapsulation --- polymeric prodrug --- dual-sensitive --- combination chemotherapy --- drug conjugation --- dextran --- hydrogels --- carboxymethyl cellulose --- succinoglycan --- metal coordination --- drug delivery --- swelling properties --- extracellular matrix --- external stimuli --- tissue maturation --- gelatin --- sodium carboxymethyl cellulose --- scaffold --- A549 cells --- freeze drying --- silicone rubber --- biomechanical --- hyper-elastic --- constitutive model --- FEA --- pH-sensitive hydrogel --- poly(acrylic acid) --- quartz crystal microbalance (QCM) --- ellipsometric measurement --- antibacterial activity --- Ganoderma lucidum --- polysaccharides --- cisplatin --- synergistic effect --- anti-lung cancer --- nanocellulose fiber --- low methoxyl pectin --- sodium alginate --- clindamycin --- pancreatic cancer --- gemcitabine --- controlled release --- non-woven sheet --- chemotherapy --- antitumor efficacy --- poly(L-lactic acid) --- antimicrobials agents --- amphiphilic block copolymer --- quaternized polymer --- hemolysis --- micelle --- black phosphorus --- polyetheretherketone --- lubrication properties --- antibacterial properties --- sensorineural hearing loss --- cochlear implants --- self-bending electrode arrays --- silicone rubber–hydrogel composites --- actuators --- swelling behavior --- curvature --- biocompatibility --- nanofibrous dura mater --- antifibrosis --- neuroprotection --- tetramethylpyrazine
Choose an application
Polymers are the largest and most versatile class of biomaterials, being extensively applied for therapeutic applications. From natural to synthetic polymers, the possibilities to design and modify their physical-chemical properties make these systems of great interest in a wide range of biomedical applications as diverse as drug delivery systems, organ-on-a-chip, diagnostics, tissue engineering, and so on.In recent years, advances in the synthesis and modification of polymers and characterization techniques have allowed the design of novel biomaterials as well as the study of their biological behavior in vitro and in vivo.The purpose of this Special Issue is to highlight recent achievements in the synthesis and modification of polymers for biomedical applications for final applications in the field of biomedicine.
Technology: general issues --- Biotechnology --- biocomposite --- chitosan --- chlorhexidine --- coating --- hernia --- mesh infection --- nanoparticles --- PLGA --- polypropylene --- rifampicin --- 3D-bioprinting --- static mixer --- reactive hydrogel --- hyaluronic acid --- modified chitosan --- curcumin --- microwave --- interpenetrated polymer network --- semi-IPN --- methacrylated hyaluronic acid --- glycerylphytate --- mesenchymal stem cell --- bioadhesion --- biomaterials --- biomedical application --- healthcare system management --- innovation --- polymer based bioadhesive --- polymers --- magnetite nanoparticles --- Tween 80 --- synthesis --- nanotoxicology --- genotoxicity --- hemotoxicity --- soy protein --- film --- semiconductor --- biomaterial --- additive manufacturing --- sterilization --- medical devices --- bioabsorbable --- polymer --- biopolymer --- hydrogel --- microparticles --- dye release --- drug delivery system --- dual-responsiveness --- dendritic polyglycerol sulfates --- biofabrication --- microfluidics --- electrospinning --- 3D printing --- electrospraying --- natural polymers --- cell encapsulation --- polymeric prodrug --- dual-sensitive --- combination chemotherapy --- drug conjugation --- dextran --- hydrogels --- carboxymethyl cellulose --- succinoglycan --- metal coordination --- drug delivery --- swelling properties --- extracellular matrix --- external stimuli --- tissue maturation --- gelatin --- sodium carboxymethyl cellulose --- scaffold --- A549 cells --- freeze drying --- silicone rubber --- biomechanical --- hyper-elastic --- constitutive model --- FEA --- pH-sensitive hydrogel --- poly(acrylic acid) --- quartz crystal microbalance (QCM) --- ellipsometric measurement --- antibacterial activity --- Ganoderma lucidum --- polysaccharides --- cisplatin --- synergistic effect --- anti-lung cancer --- nanocellulose fiber --- low methoxyl pectin --- sodium alginate --- clindamycin --- pancreatic cancer --- gemcitabine --- controlled release --- non-woven sheet --- chemotherapy --- antitumor efficacy --- poly(L-lactic acid) --- antimicrobials agents --- amphiphilic block copolymer --- quaternized polymer --- hemolysis --- micelle --- black phosphorus --- polyetheretherketone --- lubrication properties --- antibacterial properties --- sensorineural hearing loss --- cochlear implants --- self-bending electrode arrays --- silicone rubber–hydrogel composites --- actuators --- swelling behavior --- curvature --- biocompatibility --- nanofibrous dura mater --- antifibrosis --- neuroprotection --- tetramethylpyrazine
Listing 1 - 9 of 9 |
Sort by
|