Narrow your search

Library

ULiège (4)

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

VIVES (3)

More...

Resource type

book (8)


Language

English (7)

German (1)


Year
From To Submit

2022 (8)

Listing 1 - 8 of 8
Sort by

Book
Integrierte planare Antennen für supraleitende Detektorsysteme zur THz-Strahldiagnostik
Author:
ISBN: 1000139779 3731511452 Year: 2022 Publisher: Karlsruhe KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the THz frequency range, superconducting detectors coupled to planar antennas are well suited for the use in the field of accelerator beam diagnostics. This work studies the coupling efficiency and spectral sensitivity of different antenna designs. Based on the conclusions, two different detector systems for spectroscopic measurements are developed and verified with measurements at accelerator-based light sources.


Book
Contribution of X-ray Fluorescence Techniques in Cultural Heritage Materials Characterisation
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Archaeometry and cultural heritage have lately taken advantage of developments in scientific techniques, offering valuable information to archaeology, art history, and conservation science, involving both instrumental and non-instrumental approaches. Among the possible techniques, X-Ray fluorescence (XRF) has become one of the most applied techniques for cultural heritage elemental material characterization due to its user friendliness; fast, short acquisition times; portability; and most of all, its absolutely non-destructive nature. For this reason, besides being often a first choice for a preliminary overall materials investigation, XRF spectrometers and spectra data handling methods have continuously improved, giving rise to many variations of the same technique; portable spectrometers, micro-probes, and large area scanners are all variations of a very flexible technique. This Special Issue collects papers dealing with most of the analytical techniques related to XRF spectroscopy appropriate for applications to Cultural Heritage materials. We dedicate this Special Issue to the loving memory of Professor Mario Milazzo, a pioneer of Archaeometry in Italy, awarded in 2002 the Gold Medal for Culture by the Italian President. He is remembered as a generous and pleasant man with an insightful, logical mind, who was able to find an appropriate joke for every situation. Many of us following his footsteps in the research field of applied physics for Cultural Heritage still appreciate his vision, teaching, and impact on our lives.


Book
Contribution of X-ray Fluorescence Techniques in Cultural Heritage Materials Characterisation
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Archaeometry and cultural heritage have lately taken advantage of developments in scientific techniques, offering valuable information to archaeology, art history, and conservation science, involving both instrumental and non-instrumental approaches. Among the possible techniques, X-Ray fluorescence (XRF) has become one of the most applied techniques for cultural heritage elemental material characterization due to its user friendliness; fast, short acquisition times; portability; and most of all, its absolutely non-destructive nature. For this reason, besides being often a first choice for a preliminary overall materials investigation, XRF spectrometers and spectra data handling methods have continuously improved, giving rise to many variations of the same technique; portable spectrometers, micro-probes, and large area scanners are all variations of a very flexible technique. This Special Issue collects papers dealing with most of the analytical techniques related to XRF spectroscopy appropriate for applications to Cultural Heritage materials. We dedicate this Special Issue to the loving memory of Professor Mario Milazzo, a pioneer of Archaeometry in Italy, awarded in 2002 the Gold Medal for Culture by the Italian President. He is remembered as a generous and pleasant man with an insightful, logical mind, who was able to find an appropriate joke for every situation. Many of us following his footsteps in the research field of applied physics for Cultural Heritage still appreciate his vision, teaching, and impact on our lives.


Book
Interaction of Ionizing Photons with Atomic and Molecular Ions
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The interaction of ionising radiation with atomic and/or molecular ions is a fundamental process in nature, with implications for the understanding of many laboratory and astrophysical plasmas. At short wavelengths, the photon–ion interactions lead to inner-shell and multiple electron excitations, leading to demands on appropriate laboratory developments of sources and detectors and requiring advanced theoretical treatments which take into account many-body electron-correlation effects. This book includes a range of papers based on different short wavelength photon sources including recent facility and instrumental developments. Topics include experimental photoabsorption studies with laser-produced plasmas and photoionization of atomic and molecular ions with synchrotron and FEL sources, including modifications of a cylindrical mirror analyzer for high efficiency photoelectron spectroscopy on ion beams. Theoretical investigations include the effects of FEL fluctuations on autoionization line shapes, multiple sequential ionization by intense fs XUV pulses, photoelectron angular distributions for non-resonant two-photon ionization, inner-shell photodetachment of Na- and spin-polarized fluxes from fullerene anions.


Book
Contribution of X-ray Fluorescence Techniques in Cultural Heritage Materials Characterisation
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Archaeometry and cultural heritage have lately taken advantage of developments in scientific techniques, offering valuable information to archaeology, art history, and conservation science, involving both instrumental and non-instrumental approaches. Among the possible techniques, X-Ray fluorescence (XRF) has become one of the most applied techniques for cultural heritage elemental material characterization due to its user friendliness; fast, short acquisition times; portability; and most of all, its absolutely non-destructive nature. For this reason, besides being often a first choice for a preliminary overall materials investigation, XRF spectrometers and spectra data handling methods have continuously improved, giving rise to many variations of the same technique; portable spectrometers, micro-probes, and large area scanners are all variations of a very flexible technique. This Special Issue collects papers dealing with most of the analytical techniques related to XRF spectroscopy appropriate for applications to Cultural Heritage materials. We dedicate this Special Issue to the loving memory of Professor Mario Milazzo, a pioneer of Archaeometry in Italy, awarded in 2002 the Gold Medal for Culture by the Italian President. He is remembered as a generous and pleasant man with an insightful, logical mind, who was able to find an appropriate joke for every situation. Many of us following his footsteps in the research field of applied physics for Cultural Heritage still appreciate his vision, teaching, and impact on our lives.

Keywords

Research & information: general --- Physics --- MA-XRF --- conservation studies --- furniture --- Pietro Piffetti --- chinoiserie lacquered cabinet --- SAM --- STEAM --- pigments --- elemental mapping --- painting stratigraphy --- Giotto --- heritage science --- non-invasive analysis --- portable equipment --- pigment identification --- van der Weyden --- Flemish painting --- calco-potassic glass in painting --- INFN-CHNet --- Opificio delle Pietre Dure --- X-ray fluorescence --- synchrotron radiation --- µXRF --- µXANES --- black gloss --- ancient ceramics --- roman mortar --- historic mortar --- mosaic floors --- XRF --- Bracara Augusta --- Stradivari --- musical instrument --- mandolin --- varnish --- coatings --- multi-layered structure --- reflection FT-IR --- spectroscopy --- pXRF --- PCA --- pottery --- EDXRF --- cultural heritage materials --- pigment analysis --- ceramics classification --- metal alloy quantitative analysis --- MA-XRF --- conservation studies --- furniture --- Pietro Piffetti --- chinoiserie lacquered cabinet --- SAM --- STEAM --- pigments --- elemental mapping --- painting stratigraphy --- Giotto --- heritage science --- non-invasive analysis --- portable equipment --- pigment identification --- van der Weyden --- Flemish painting --- calco-potassic glass in painting --- INFN-CHNet --- Opificio delle Pietre Dure --- X-ray fluorescence --- synchrotron radiation --- µXRF --- µXANES --- black gloss --- ancient ceramics --- roman mortar --- historic mortar --- mosaic floors --- XRF --- Bracara Augusta --- Stradivari --- musical instrument --- mandolin --- varnish --- coatings --- multi-layered structure --- reflection FT-IR --- spectroscopy --- pXRF --- PCA --- pottery --- EDXRF --- cultural heritage materials --- pigment analysis --- ceramics classification --- metal alloy quantitative analysis


Book
Interaction of Ionizing Photons with Atomic and Molecular Ions
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The interaction of ionising radiation with atomic and/or molecular ions is a fundamental process in nature, with implications for the understanding of many laboratory and astrophysical plasmas. At short wavelengths, the photon–ion interactions lead to inner-shell and multiple electron excitations, leading to demands on appropriate laboratory developments of sources and detectors and requiring advanced theoretical treatments which take into account many-body electron-correlation effects. This book includes a range of papers based on different short wavelength photon sources including recent facility and instrumental developments. Topics include experimental photoabsorption studies with laser-produced plasmas and photoionization of atomic and molecular ions with synchrotron and FEL sources, including modifications of a cylindrical mirror analyzer for high efficiency photoelectron spectroscopy on ion beams. Theoretical investigations include the effects of FEL fluctuations on autoionization line shapes, multiple sequential ionization by intense fs XUV pulses, photoelectron angular distributions for non-resonant two-photon ionization, inner-shell photodetachment of Na- and spin-polarized fluxes from fullerene anions.

Keywords

Research & information: general --- 2s2p --- Lithium-ion --- auto-ionization --- free electron laser --- stochastic average --- time dependent density matrix --- photoionization --- multiple ionization --- many-electron processes --- absolute cross sections --- synchrotron radiation --- collisional-radiative model --- laser-produced plasma, ion distribution --- ionization bottleneck --- radiative recombination --- collisional ioniztion --- three-body recombination --- nonlinear photoionization --- nonlinear interaction --- Cooper minimum --- angular distributions --- atomic ions --- dual-laser plasma technique --- photodetachment --- inner-shell phenomena --- electron spectroscopy --- ion beam --- spin-polarization --- fullerene anions --- endohedral fullerene anions --- NH+ --- molecular ion --- K-shell --- merged-beam --- Pb-Sn alloys --- EUV emission of high Z materials --- collisional radiative model --- Cowan suite of Codes --- ions --- free-electron laser --- krypton --- femtosecond pulses --- photoelectron spectroscopy --- atomic data --- inner-shell photoionization --- atomic nitrogen ion --- 2s2p --- Lithium-ion --- auto-ionization --- free electron laser --- stochastic average --- time dependent density matrix --- photoionization --- multiple ionization --- many-electron processes --- absolute cross sections --- synchrotron radiation --- collisional-radiative model --- laser-produced plasma, ion distribution --- ionization bottleneck --- radiative recombination --- collisional ioniztion --- three-body recombination --- nonlinear photoionization --- nonlinear interaction --- Cooper minimum --- angular distributions --- atomic ions --- dual-laser plasma technique --- photodetachment --- inner-shell phenomena --- electron spectroscopy --- ion beam --- spin-polarization --- fullerene anions --- endohedral fullerene anions --- NH+ --- molecular ion --- K-shell --- merged-beam --- Pb-Sn alloys --- EUV emission of high Z materials --- collisional radiative model --- Cowan suite of Codes --- ions --- free-electron laser --- krypton --- femtosecond pulses --- photoelectron spectroscopy --- atomic data --- inner-shell photoionization --- atomic nitrogen ion


Book
Interaction of Ionizing Photons with Atomic and Molecular Ions
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The interaction of ionising radiation with atomic and/or molecular ions is a fundamental process in nature, with implications for the understanding of many laboratory and astrophysical plasmas. At short wavelengths, the photon–ion interactions lead to inner-shell and multiple electron excitations, leading to demands on appropriate laboratory developments of sources and detectors and requiring advanced theoretical treatments which take into account many-body electron-correlation effects. This book includes a range of papers based on different short wavelength photon sources including recent facility and instrumental developments. Topics include experimental photoabsorption studies with laser-produced plasmas and photoionization of atomic and molecular ions with synchrotron and FEL sources, including modifications of a cylindrical mirror analyzer for high efficiency photoelectron spectroscopy on ion beams. Theoretical investigations include the effects of FEL fluctuations on autoionization line shapes, multiple sequential ionization by intense fs XUV pulses, photoelectron angular distributions for non-resonant two-photon ionization, inner-shell photodetachment of Na- and spin-polarized fluxes from fullerene anions.


Book
Magnetic reconnection : a modern synthesis of theory, experiment, and observations
Author:
ISBN: 0691232989 Year: 2022 Publisher: Princeton, N.J. : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The essential introduction to magnetic reconnection—written by a leading pioneer of the fieldPlasmas comprise more than 99 percent of the visible universe; and, wherever plasmas are, magnetic reconnection occurs. In this common and yet incompletely understood physical process, oppositely directed magnetic fields in a plasma meet, break, and then reconnect, converting the huge amounts of energy stored in magnetic fields into kinetic and thermal energy. In Magnetic Reconnection, Masaaki Yamada offers an illuminating synthesis of modern research and advances on this important topic. Magnetic reconnection produces such phenomena as solar flares and the northern lights, and occurs in nuclear fusion devices. A better understanding of this crucial cosmic activity is essential to comprehending the universe and varied technological applications, such as satellite communications. Most of our knowledge of magnetic reconnection comes from theoretical and computational models and laboratory experiments, but space missions launched in recent years have added up-close observation and measurements to researchers’ tools. Describing the fundamental physics of magnetic reconnection, Yamada connects the theory with the latest results from laboratory experiments and space-based observations, including the Magnetic Reconnection Experiment (MRX) and the Magnetospheric Multiscale (MMS) Mission. He concludes by considering outstanding problems and laying out a road map for future research.Aimed at advanced graduate students and researchers in plasma astrophysics, solar physics, and space physics, Magnetic Reconnection provides cutting-edge information vital area of scientific investigation.

Keywords

Magnetic reconnection. --- SCIENCE / Physics / Magnetism. --- Acceleration. --- Accretion disk. --- Ampere. --- Annihilation. --- Astrophysical plasma. --- Astrophysics. --- Bremsstrahlung. --- Collision frequency. --- Collisionality. --- Coronal loop. --- Coronal mass ejection. --- Coulomb collision. --- Current density. --- Current sheet. --- Cyclotron. --- Debye length. --- Diffusion layer. --- Dissipation. --- Drift velocity. --- Dynamo theory. --- Electric field. --- Electrical resistivity and conductivity. --- Electron temperature. --- Electrostatics. --- Energy transformation. --- Experimental physics. --- Fermi acceleration. --- Feynman diagram. --- Field effect (semiconductor). --- Field line. --- Fine structure. --- Flux tube. --- Fusion power. --- Gauge theory. --- Gyroradius. --- Hall effect. --- Inductance. --- Induction equation. --- Instability. --- Interferometry. --- Ion acoustic wave. --- Ionization. --- Kinetic theory of gases. --- Kink instability. --- Landau damping. --- Langmuir probe. --- Length scale. --- Lorentz force. --- Madison Symmetric Torus. --- Magnetar. --- Magnetic confinement fusion. --- Magnetic diffusivity. --- Magnetic dipole. --- Magnetic energy. --- Magnetic field. --- Magnetic flux. --- Magnetic helicity. --- Magnetization. --- Magnetohydrodynamics. --- Magnetopause. --- Magnetosheath. --- Magnetosonic wave. --- Magnetosphere. --- Maxwell–Boltzmann distribution. --- Mean free path. --- Momentum transfer. --- Neutral beam injection. --- Nonlinear optics. --- Nuclear fusion. --- Paramagnetism. --- Particle physics. --- Pitch angle (particle motion). --- Plasma (physics). --- Plasma acceleration. --- Plasma oscillation. --- Plasma parameter. --- Plasma parameters. --- Plasma stability. --- Plasmoid. --- Quadrupole. --- Relativistic plasma. --- Reversed field pinch. --- Safety factor (plasma physics). --- Scattering. --- Skin effect. --- Solar flare. --- Spacecraft. --- Spatial scale. --- Spheromak. --- Stark effect. --- Substorm. --- Synchrotron radiation. --- Thermodynamic equilibrium. --- Thomson scattering. --- Tokamak. --- Two-dimensional space. --- Van Allen radiation belt. --- Weibel instability. --- X-ray. --- Annihilation, Magnetic field --- Magnetic field annihilation --- Magnetic field line merging --- Merging, Magnetic field line --- Reconnection, Magnetic --- Reconnection (Astronomy) --- Astrophysics --- Geophysics --- Magnetic fields

Listing 1 - 8 of 8
Sort by