Listing 1 - 3 of 3 |
Sort by
|
Choose an application
Flows of thermal origin and heat transfer problems are central in a variety of disciplines and industrial applications. The present book entitled Thermal Flows consists of a collection of studies by distinct investigators and research groups dealing with different types of flows relevant to both natural and technological contexts. Both reviews of the state-of-the-art and new theoretical, numerical and experimental investigations are presented, which illustrate the structure of these flows, their stability behavior, and the possible bifurcations to different patterns of symmetry and/or spatiotemporal regimes. Moreover, different categories of fluids are considered (liquid metals, gases, common fluids such as water and silicone oils, organic and inorganic transparent liquids, and nanofluids). This information is presented under the hope that it will serve as a new important resource for physicists, engineers and advanced students interested in the physics of non-isothermal fluid systems; fluid mechanics; environmental phenomena; meteorology; geophysics; and thermal, mechanical and materials engineering.
Research & information: general --- Physics --- coating flow --- free surface --- boundary layer --- stress singularity --- matched asymptotic expansions --- computational fluid dynamics --- turbulence --- rotating thermal convection --- Rayleigh–Bénard --- heat enhancement --- nanofluid --- circular pipe --- twisted tape --- porous media --- metal foam --- convection-driven dynamos --- numerical simulations --- bistability --- mean-field magnetohydrodynamics --- spherical shells --- stochastic equations --- equivalence of measures --- nature of turbulence --- critical Reynolds number --- thermovibrational convection --- gravity modulation --- thermofluid-dynamic distortions --- patterning behavior --- stratified mixing layer --- non-modal instability --- Kelvin-Helmholtz instability --- Holmboe instability --- rotating thermal magnetoconvection --- linear onset --- sphere --- Rayleigh–Bénard convection --- time periodical cooling --- Lattice Boltzmann method --- thermocapillary-driven convection --- half-zone liquid bridges --- particles --- coherent structures --- particle accumulation structure (PAS) --- high Prandtl number fluids --- plane layer --- circular translational vibrations --- thermal vibrational convection --- convective patterns --- n/a --- Rayleigh-Bénard --- Rayleigh-Bénard convection
Choose an application
Flows of thermal origin and heat transfer problems are central in a variety of disciplines and industrial applications. The present book entitled Thermal Flows consists of a collection of studies by distinct investigators and research groups dealing with different types of flows relevant to both natural and technological contexts. Both reviews of the state-of-the-art and new theoretical, numerical and experimental investigations are presented, which illustrate the structure of these flows, their stability behavior, and the possible bifurcations to different patterns of symmetry and/or spatiotemporal regimes. Moreover, different categories of fluids are considered (liquid metals, gases, common fluids such as water and silicone oils, organic and inorganic transparent liquids, and nanofluids). This information is presented under the hope that it will serve as a new important resource for physicists, engineers and advanced students interested in the physics of non-isothermal fluid systems; fluid mechanics; environmental phenomena; meteorology; geophysics; and thermal, mechanical and materials engineering.
coating flow --- free surface --- boundary layer --- stress singularity --- matched asymptotic expansions --- computational fluid dynamics --- turbulence --- rotating thermal convection --- Rayleigh–Bénard --- heat enhancement --- nanofluid --- circular pipe --- twisted tape --- porous media --- metal foam --- convection-driven dynamos --- numerical simulations --- bistability --- mean-field magnetohydrodynamics --- spherical shells --- stochastic equations --- equivalence of measures --- nature of turbulence --- critical Reynolds number --- thermovibrational convection --- gravity modulation --- thermofluid-dynamic distortions --- patterning behavior --- stratified mixing layer --- non-modal instability --- Kelvin-Helmholtz instability --- Holmboe instability --- rotating thermal magnetoconvection --- linear onset --- sphere --- Rayleigh–Bénard convection --- time periodical cooling --- Lattice Boltzmann method --- thermocapillary-driven convection --- half-zone liquid bridges --- particles --- coherent structures --- particle accumulation structure (PAS) --- high Prandtl number fluids --- plane layer --- circular translational vibrations --- thermal vibrational convection --- convective patterns --- n/a --- Rayleigh-Bénard --- Rayleigh-Bénard convection
Choose an application
Flows of thermal origin and heat transfer problems are central in a variety of disciplines and industrial applications. The present book entitled Thermal Flows consists of a collection of studies by distinct investigators and research groups dealing with different types of flows relevant to both natural and technological contexts. Both reviews of the state-of-the-art and new theoretical, numerical and experimental investigations are presented, which illustrate the structure of these flows, their stability behavior, and the possible bifurcations to different patterns of symmetry and/or spatiotemporal regimes. Moreover, different categories of fluids are considered (liquid metals, gases, common fluids such as water and silicone oils, organic and inorganic transparent liquids, and nanofluids). This information is presented under the hope that it will serve as a new important resource for physicists, engineers and advanced students interested in the physics of non-isothermal fluid systems; fluid mechanics; environmental phenomena; meteorology; geophysics; and thermal, mechanical and materials engineering.
Research & information: general --- Physics --- coating flow --- free surface --- boundary layer --- stress singularity --- matched asymptotic expansions --- computational fluid dynamics --- turbulence --- rotating thermal convection --- Rayleigh-Bénard --- heat enhancement --- nanofluid --- circular pipe --- twisted tape --- porous media --- metal foam --- convection-driven dynamos --- numerical simulations --- bistability --- mean-field magnetohydrodynamics --- spherical shells --- stochastic equations --- equivalence of measures --- nature of turbulence --- critical Reynolds number --- thermovibrational convection --- gravity modulation --- thermofluid-dynamic distortions --- patterning behavior --- stratified mixing layer --- non-modal instability --- Kelvin-Helmholtz instability --- Holmboe instability --- rotating thermal magnetoconvection --- linear onset --- sphere --- Rayleigh-Bénard convection --- time periodical cooling --- Lattice Boltzmann method --- thermocapillary-driven convection --- half-zone liquid bridges --- particles --- coherent structures --- particle accumulation structure (PAS) --- high Prandtl number fluids --- plane layer --- circular translational vibrations --- thermal vibrational convection --- convective patterns
Listing 1 - 3 of 3 |
Sort by
|