Listing 1 - 10 of 20 | << page >> |
Sort by
|
Choose an application
Les gouvernements se sont engagés à offrir des données ouvertes à une période où l'économie numérique transforme la valeur des données. La technologie accroît la nature et le nombre des données recueillies par les gouvernements, transformant la signification des données gouvernementales ouvertes et de manière à rendre sa pratique plus complexe. Dans ce contexte en évolution, cet ouvrage examine l'avenir des données ouvertes.
Choose an application
Savoir où va l’argent public est une curiosité légitime : on parle, ici, de 300 milliards de dépenses annuelles à l’échelle de la France. En analysant ces parcours financiers, qui sont surtout politiques et économiques, l’auteur nous offre l’opportunité de mieux comprendre pratiques et critères de la commande publique. Il propose aussi de se saisir d’un levier démocratique pour mieux éprouver, comme citoyens, les circuits de distribution de cet argent qui est aussi le nôtre.
Economics (General) --- marchés publics --- open data --- intelligence artificielle --- corruption --- commande publique
Choose an application
This book is a comprehensive and accessible guide to creating accurate, consistent, complete, user-centred and quality metadata that supports the user tasks of finding, identifying, selecting, obtaining and exploring information resources. Based on the author's many years of academic research and work as a cataloguing and metadata librarian, it shows readers how they can configure, create, enhance and enrich their metadata for print and digital resources. The book applies examples using MARC21, RDA, FRBR, BIBFRAME, subject headings and name authorities. It also uses screenshots from cutting edge library management systems, discovery interfaces and metadata tools. Coverage includes:
Library metadata. --- Linked data. --- Web sémantique --- Métadonnées --- Toile sémantique. --- Manuel. --- Sciences de l'information --- Data, Linked --- Library linked data --- Linked open data --- LOD (Linked data) --- Open linked data --- Open data, Linked --- Metadata --- Semantic Web --- Uniform Resource Identifiers --- Library resource metadata --- Library resources --- Library metadata --- Linked data --- Web sémantique --- Métadonnées
Choose an application
Health research around the world relies on access to data, and much of the most valuable, reliable, and comprehensive data collections are held by governments. These collections, which contain data on whole populations, are a powerful tool in the hands of researchers, especially when they are linked and analyzed, and can help to address "wicked problems" in health and emerging global threats such as COVID-19. At the same time, these data collections contain sensitive information that must only be used in ways that respect the values, interests, and rights of individuals and their communities. Sharing Linked Data for Health Research provides a template for allowing research access to government data collections in a regulatory environment designed to build social license while supporting the research enterprise.
Medical records --- Data protection --- Medicine --- Linked data --- Access control --- Law and legislation --- Research --- Government policy --- Metadata --- Semantic Web --- Uniform Resource Identifiers --- Data, Linked --- Library linked data --- Linked open data --- LOD (Linked data) --- Open linked data --- Open data, Linked --- Health Workforce --- Electronic data processing --- Data governance --- Data regulation --- Personal data protection --- Protection, Data --- Communication in medicine --- Hospital records --- Clinical records --- Health records --- Hospital medical records --- Patient care records
Choose an application
The Future of Open Data est issu d’un projet de recherche en partenariat subventionné pendant plusieurs années par le Conseil de recherches en sciences humaines (CRSH) qui vise à explorer les données gouvernementales géospatiales ouvertes dans une perspective interdisciplinaire. Les chercheurs associés à cette subvention ont adopté une perspective critique en sciences sociales basée sur l’impératif voulant que la recherche devrait être pertinente à la fois pour le gouvernement et pour les partenaires de la société civile œuvrant dans ce domaine.Cet ouvrage s’appuie sur les connaissances développées durant la période de validité de la subvention et soulève la question : « Quel est l’avenir des données ouvertes ? » Les collaborateurs partagent leurs idées à propos de l’avenir des données ouvertes à la suite d’observations et de recherches menées pendant cinq ans sur la communauté des données ouvertes canadiennes selon une perspective critique de ce qui pourrait et ce qui devrait arriver dans un contexte où évoluent les efforts concernant les données ouvertes.Chaque chapitre de ce livre aborde une diversité d’enjeux tout en s’appuyant sur des perspectives disciplinaires ou interdisciplinaires. Le premier chapitre retrace les origines des données ouvertes au Canada et la manière dont la situation a évolué jusqu’à aujourd’hui, en tenant compte du croisement entre le mouvement de souveraineté des données autochtones et les données ouvertes. Quelques chapitres se penchent sur certains dangers et sur les possibilités des données ouvertes, à leurs limites et même aux responsabilités qui s’y rattachent. Une autre série de chapitres examine les horizons appropriés pour les données ouvertes, incluant les données ouvertes dans le Sud global, les priorités des gouvernements locaux en matière de données et le contexte émergent des données ouvertes dans les milieux ruraux.
Electronic government information. --- Electronic public records. --- Freedom of information. --- Geospatial data. --- Government information --- Government information. --- Transparency in government --- POLITICAL SCIENCE / Public Policy / Science & Technology Policy. --- Data economy. --- Data governance. --- Data society. --- Données ouvertes. --- Geoweb. --- Gestion des données. --- Géoweb. --- Open data. --- Société de données. --- Économie de données. --- Access control. --- Technological innovations. --- Transparency (Ethics) in government
Choose an application
Data Science (DS) is gaining significant importance in the decision process due to a mix of various areas, including Computer Science, Machine Learning, Math and Statistics, domain/business knowledge, software development, and traditional research. In the business field, DS's application allows using scientific methods, processes, algorithms, and systems to extract knowledge and insights from structured and unstructured data to support the decision process. After collecting the data, it is crucial to discover the knowledge. In this step, Knowledge Discovery (KD) tasks are used to create knowledge from structured and unstructured sources (e.g., text, data, and images). The output needs to be in a readable and interpretable format. It must represent knowledge in a manner that facilitates inferencing. KD is applied in several areas, such as education, health, accounting, energy, and public administration. This book includes fourteen excellent articles which discuss this trending topic and present innovative solutions to show the importance of Data Science and Knowledge Discovery to researchers, managers, industry, society, and other communities. The chapters address several topics like Data mining, Deep Learning, Data Visualization and Analytics, Semantic data, Geospatial and Spatio-Temporal Data, Data Augmentation and Text Mining.
crisis reporting --- chatbots --- journalists --- news media --- COVID-19 --- textbook research --- digital humanities --- digital infrastructures --- data analysis --- content base image retrieval --- semantic information retrieval --- deep features --- multimedia document retrieval --- data science --- open government data --- governance and social institutions --- economic determinants of open data --- geoinformation technology --- fractal dimension --- territorial road network --- box-counting framework --- script Python --- ArcGIS --- internet of things --- LoRaWAN --- ICT --- The Things Network --- ESP32 microcontroller --- decision systems --- rule based systems --- databases --- rough sets --- prediction by partial matching --- spatio-temporal --- activity recognition --- smart homes --- artificial intelligence --- automation --- e-commerce --- machine learning --- big data --- customer relationship management (CRM) --- distracted driving --- driving behavior --- driving operation area --- data augmentation --- feature extraction --- authorship --- text mining --- attribution --- neural networks --- deep learning --- forensic intelligence --- dashboard --- WebGIS --- data analytics --- SARS-CoV-2 --- Big Data --- Web Intelligence --- media analytics --- social sciences --- humanities --- linked open data --- adaptation process --- interdisciplinary research --- media criticism --- classification --- information systems --- public health --- data mining --- ioCOVID19 --- n/a
Choose an application
Data Science (DS) is gaining significant importance in the decision process due to a mix of various areas, including Computer Science, Machine Learning, Math and Statistics, domain/business knowledge, software development, and traditional research. In the business field, DS's application allows using scientific methods, processes, algorithms, and systems to extract knowledge and insights from structured and unstructured data to support the decision process. After collecting the data, it is crucial to discover the knowledge. In this step, Knowledge Discovery (KD) tasks are used to create knowledge from structured and unstructured sources (e.g., text, data, and images). The output needs to be in a readable and interpretable format. It must represent knowledge in a manner that facilitates inferencing. KD is applied in several areas, such as education, health, accounting, energy, and public administration. This book includes fourteen excellent articles which discuss this trending topic and present innovative solutions to show the importance of Data Science and Knowledge Discovery to researchers, managers, industry, society, and other communities. The chapters address several topics like Data mining, Deep Learning, Data Visualization and Analytics, Semantic data, Geospatial and Spatio-Temporal Data, Data Augmentation and Text Mining.
Information technology industries --- Computer science --- crisis reporting --- chatbots --- journalists --- news media --- COVID-19 --- textbook research --- digital humanities --- digital infrastructures --- data analysis --- content base image retrieval --- semantic information retrieval --- deep features --- multimedia document retrieval --- data science --- open government data --- governance and social institutions --- economic determinants of open data --- geoinformation technology --- fractal dimension --- territorial road network --- box-counting framework --- script Python --- ArcGIS --- internet of things --- LoRaWAN --- ICT --- The Things Network --- ESP32 microcontroller --- decision systems --- rule based systems --- databases --- rough sets --- prediction by partial matching --- spatio-temporal --- activity recognition --- smart homes --- artificial intelligence --- automation --- e-commerce --- machine learning --- big data --- customer relationship management (CRM) --- distracted driving --- driving behavior --- driving operation area --- data augmentation --- feature extraction --- authorship --- text mining --- attribution --- neural networks --- deep learning --- forensic intelligence --- dashboard --- WebGIS --- data analytics --- SARS-CoV-2 --- Big Data --- Web Intelligence --- media analytics --- social sciences --- humanities --- linked open data --- adaptation process --- interdisciplinary research --- media criticism --- classification --- information systems --- public health --- data mining --- ioCOVID19
Choose an application
Dieses Buch bietet Führungskräften und Mitarbeitenden im öffentlichen Sektor sowie Studierenden eine kompakte und kompetente Einführung in die wesentlichen Aspekte von Open Government. Das Konzept Open Government beschreibt einen Kulturwandel von Politik und Verwaltung hin zu mehr Transparenz, Partizipation der Zivilgesellschaft und Zusammenarbeit innerhalb des öffentlichen Sektors als auch mit Akteuren aus Wirtschaft und Wissenschaft. Durch die Digitalisierung und des Angebots offener Daten ergeben sich für Politik und Verwaltung neue Möglichkeiten der Interaktion und der Offenlegung von Entscheidungen.Das Buch bietet einen kompakten Einstieg in Themen wie Transparenz, Bürgerbeteiligung, Zusammenarbeit sowie der Öffnung von Datenbeständen.Durch direkte Verlinkungen auf vorbildhafte Beispiele für ein offenes Regierungs- und Verwaltungshandeln in der Praxis wird das umfangreiche Wissen anschaulich vermittelt. Die Leser werden mit Leitbildern, Strategien und Methoden im Bereich Open Open-Access-Publikation mit freiem Online-Zugang. Mit Online-Wissens-Quiz Government vertraut gemacht. Im Sinne von Offenheit ist dieses Werk eine über die Springer Nature Flashcards-App. . Aus dem Inhalt • Open Government – offenes Regierungs- und Verwaltungshandeln • Transparenz 2.0, offene Daten und offene Verwaltungsdaten • Open Budget – Öffnung des Haushaltswesens • Bürgerbeteiligung 2.0 und innerbehördliche Zusammenarbeit 2.0 Der Autor, die Autorin Prof. Dr. Jörn von Lucke leitet The Open Government Institute (TOGI) am Lehrstuhl für Verwaltungs- und Wirtschaftsinformatik der Zeppelin Universität Friedrichshafen. Katja Gollasch M.A. ist wissenschaftliche Mitarbeiterin des Lehrstuhls für Verwaltungs- und Wirtschaftsinformatik am The Open Government Institute (TOGI) der Zeppelin Universität Friedrichshafen. .
Public administration. --- Public Administration. --- Public Management. --- Administration, Public --- Delivery of government services --- Government services, Delivery of --- Public management --- Public sector management --- Political science --- Administrative law --- Decentralization in government --- Local government --- Public officers --- Open Government Deutschland --- Transparenz Öffentliche Verwaltung --- Open Government Zivilgesellschaft --- Bürgerbeteiligung künstliche Intelligenz Publikation zu offene Daten – Open Data --- Öffnung des Haushaltswesens – Open Budget --- Zusammenarbeit Kommune Bürger --- Zusammenarbeit Staat Bürger --- Open Innovation – Open Societal Innovation --- E-Government --- Zusammenarbeit künstliche Intelligenz --- GovData - Government Data --- TosiT The Open Societal Toolbox --- OGPDE Open Government Partnership Deutschland --- OKF Open Knowledge Foundation --- NAP Nationale Aktionspläne Open Government --- sechsstufiger Politikzyklus --- Web 2.0-Dienste --- Urbane Datenräume --- Open Government deutsche Verwaltung
Choose an application
Air pollution is a worldwide environmental hazard that poses serious consequences not only for human health and the climate but also for agriculture, ecosystems, and cultural heritage, among other factors. According to the WHO, there are 8 million premature deaths every year as a result of exposure to ambient air pollution. In addition, more than 90% of the world’s population live in areas where the air quality is poor, exceeding the recommended limits. On the other hand, air pollution and the climate co-influence one another through complex physicochemical interactions in the atmosphere that alter the Earth’s energy balance and have implications for climate change and the air quality. It is important to measure specific atmospheric parameters and pollutant compound concentrations, monitor their variations, and analyze different scenarios with the aim of assessing the air pollution levels and developing early warning and forecast systems as a means of improving the air quality and safeguarding public health. Such measures can also form part of efforts to achieve a reduction in the number of air pollution casualties and mitigate climate change phenomena. This book contains contributions focusing on remote sensing techniques for evaluating air quality, including the use of in situ data, modeling approaches, and the synthesis of different instrumentations and techniques. The papers published in this book highlight the importance and relevance of air quality studies and the potential of remote sensing, particularly that conducted from Earth observation platforms, to shed light on this topic.
Research & information: general --- Meteorology & climatology --- tropospheric NO2 concentrations --- nitrogen dioxide --- OMI --- spatio-temporal trends --- DBEST --- PolyTrend --- time-series analysis --- breakpoint detection --- air pollution --- TROPOMI --- COVID --- nitrogen oxides --- satellite-based --- NO2 --- land use regression --- exposure assessment --- carbon monoxide --- COVID-19 --- China --- surface concentration --- IASI --- drone --- UAV --- gas sensors --- odour --- industrial emissions --- mapping --- environmental monitoring --- aerosol optical depth --- CAMS --- machine learning --- MODIS --- urban form --- PM2.5 --- landscape metrics --- geographically weighted regression --- Yunnan Plateau --- biomass burning --- cross-border transport --- WRF-Chem --- formaldehyde --- trend --- satellite --- monitor --- annual --- seasonal --- temperature --- meteorology --- AOD --- Europe --- open data --- n/a
Choose an application
Data science is an emerging multidisciplinary field which lies at the intersection of computer science, statistics, and mathematics, with different applications and related to data mining, deep learning, and big data. This Special Issue on “Principles and Applications of Data Science” focuses on the latest developments in the theories, techniques, and applications of data science. The topics include data cleansing, data mining, machine learning, deep learning, and the applications of medical and healthcare, as well as social media.
Technology: general issues --- History of engineering & technology --- deep learning --- user preference learning --- feature fusion --- similar user recommendation --- convolutional neural network --- image classification --- electronic health records --- fair exchange --- forward secrecy --- raw material --- mining --- terminology --- dictionary --- terminology application --- mobile application --- digitization --- lexical data --- corpus data --- linguistic linked open data --- neuro-fuzzy --- prediction model --- air pollution --- PM2.5 --- PM10 --- self-attention mechanism --- graph neural network --- data mining --- behaviour sequence pattern --- behaviour network --- water crystal --- fine-tuning --- supervised --- classification --- combined classification model --- deep transfer learning --- focal-segmental --- kidney disease --- kidney glomeruli --- medical image --- sclerosed glomeruli --- predictive analytics --- Internet of Things --- peasant farming --- smart farming system --- crop production prediction
Listing 1 - 10 of 20 | << page >> |
Sort by
|