Listing 1 - 9 of 9 |
Sort by
|
Choose an application
Oil palm. --- African oil palm --- Elaeis guineensis --- Elaeis melanococca --- Palm oil tree --- Elaeis --- Oilseed plants --- Palm oil
Choose an application
"Oil Palm Biomass for Composite Panels: Fundamentals, Processing, and Applications explains the preparation and utilization of oil palm biomass for advanced composite panel products. It introduces the fundamentals of oil palm biomass and wood-based panel products, including basic properties, durability, deterioration, and adhesives. It also includes in-depth information on processing and treatments organized by biomass type, covering oil palm trunk and lumber, veneer, empty fruit bunches (EFBs), oil palm fronds, and other sources. Additionally, this book focuses on specific composite panel applications, explaining the utilization of oil palm biomass in specific products."--
Composite materials. --- Composites (Materials) --- Multiphase materials --- Reinforced solids --- Solids, Reinforced --- Two phase materials --- Materials --- Oil palm. --- Fibrous composites. --- Biomass. --- Paneling.
Choose an application
Twelve edited original papers on the latest and state-of-art results of topics ranging from calibration, validation, and science to a wide range of applications using ALOS-2/PALSAR-2. We hope you will find them useful for your future research.
Technology: general issues --- History of engineering & technology --- Environmental science, engineering & technology --- Sentinel-1 --- ALOS/PALSAR-2 --- land subsidence --- accuracy assessment --- Alexandria City --- Egypt --- local climate zone --- random forest --- feature importance --- land surface temperature --- grid cells --- Sentinel-2 --- PALSAR-2 --- ASTER --- soil moisture --- ALOS-2 --- GA-BP --- water cloud model --- L-band --- SAR --- backscattering --- soil moisture content --- LAI --- HH and HV polarization --- flood --- NoBADI --- Florida --- Hurricane Irma --- synthetic aperture radar --- polarimetric radar --- co-polarized phase difference --- radar scattering --- vegetation --- radar applications --- agriculture --- leaf area index --- leave-one-out cross-validation --- oil palm --- radar vegetation index --- vegetation descriptors --- ecosystem carbon cycle --- L-band SAR --- vegetation index --- random forest regression --- plantation --- permafrost --- InSAR --- Qinghai-Tibet Plateau --- ALOS --- thermal melting collapse --- Sentinel-1A --- SBAS-InSAR --- heavy forest area --- potential landslide identification --- SAR-based landslide detection --- Growing Split-Based Approach (GSBA) --- Hokkaido landslide --- Putanpunas landslide --- SAR polarimetry --- model-free 3-component decomposition for full polarimetric data (MF3CF) --- radar polarimetry --- calibration --- Faraday rotation
Choose an application
Concrete is one of the most widely used construction material in the word today. The research in concrete follows the environment impact, economy, population and advanced technology. This special issue presents the recent numerical study for research in concrete. The research topic includes the finite element analysis, digital concrete, reinforcement technique without rebars and 3D printing.
Technology: general issues --- History of engineering & technology --- cementitious composite --- nano-SiO2 --- PVA fiber --- durability evaluation --- adaptive neuro-fuzzy inference system --- aggregate type --- specimen shape --- specimen size --- compressive strength --- concrete mechanical properties --- concrete composites --- waste metalised polypropylene fibres --- durability --- sulphate and acid attacks --- palm oil fuel ash --- fiber-reinforced concrete --- blast resistance --- lattice discrete particle model-fiber --- damage mode --- contact detonation --- concrete brick --- FGD gypsum --- construction and demolition waste --- oil palm trunks --- sugarcane bagasse ash --- sensitivity analysis --- gene expression programming --- multiple linear and non-linear regression --- green concrete --- concrete-filled steel tube (CFST) --- axial capacity --- genetic engineering programming (GEP) --- Euler's buckling load --- GEP-based model --- calcium silicate hydrate --- simulation --- concrete --- corrosion inhibitor --- grand canonical Monte Carlo method --- molecular dynamics --- adsorption --- coupled RBSM and solid FEM model --- PBL shear connector --- shear strength --- lateral pressures --- failure mechanism --- bamboo-reinforced concrete (BRC) --- stiffness prediction --- artificial neural network (ANN) --- radioactive waste --- long-term performance --- degradation --- modeling --- finite element analysis --- mechanical properties --- mechanisms --- diffusion --- material properties --- sodium alginate --- basalt fiber --- temperature --- impact resistance --- pre-packed aggregate fibre-reinforced concrete --- strength --- long-term shrinkage --- microstructure --- waste polypropylene fibres --- cohesion --- angle of shear deformation --- Mohr-Coulomb model --- induced tensile strength --- concrete samples --- Brazilian test --- finite element method (FEM) --- artificial neural networks --- confined concrete --- strength model --- FRP --- strain model --- RMSE --- forta fibers --- synthetic fibers --- hybrid fiber reinforced concrete --- constitutive modeling --- uniaxial test --- slump test --- pore structure --- water absorption --- MIP --- fractal dimension --- pore connectivity --- T-shaped reinforced concrete beams --- CFRP --- numerical analysis --- non-destructive test (NDT) --- elastic wave --- air-entrained rubberized concrete --- stress-strain curve --- concrete failure --- damage of material --- effective modulus of elasticity --- effective stress --- hybrid-fiber-reinforced concrete --- shaft lining --- numerical simulation --- orthogonal test --- ultimate capacity --- cementitious composite --- nano-SiO2 --- PVA fiber --- durability evaluation --- adaptive neuro-fuzzy inference system --- aggregate type --- specimen shape --- specimen size --- compressive strength --- concrete mechanical properties --- concrete composites --- waste metalised polypropylene fibres --- durability --- sulphate and acid attacks --- palm oil fuel ash --- fiber-reinforced concrete --- blast resistance --- lattice discrete particle model-fiber --- damage mode --- contact detonation --- concrete brick --- FGD gypsum --- construction and demolition waste --- oil palm trunks --- sugarcane bagasse ash --- sensitivity analysis --- gene expression programming --- multiple linear and non-linear regression --- green concrete --- concrete-filled steel tube (CFST) --- axial capacity --- genetic engineering programming (GEP) --- Euler's buckling load --- GEP-based model --- calcium silicate hydrate --- simulation --- concrete --- corrosion inhibitor --- grand canonical Monte Carlo method --- molecular dynamics --- adsorption --- coupled RBSM and solid FEM model --- PBL shear connector --- shear strength --- lateral pressures --- failure mechanism --- bamboo-reinforced concrete (BRC) --- stiffness prediction --- artificial neural network (ANN) --- radioactive waste --- long-term performance --- degradation --- modeling --- finite element analysis --- mechanical properties --- mechanisms --- diffusion --- material properties --- sodium alginate --- basalt fiber --- temperature --- impact resistance --- pre-packed aggregate fibre-reinforced concrete --- strength --- long-term shrinkage --- microstructure --- waste polypropylene fibres --- cohesion --- angle of shear deformation --- Mohr-Coulomb model --- induced tensile strength --- concrete samples --- Brazilian test --- finite element method (FEM) --- artificial neural networks --- confined concrete --- strength model --- FRP --- strain model --- RMSE --- forta fibers --- synthetic fibers --- hybrid fiber reinforced concrete --- constitutive modeling --- uniaxial test --- slump test --- pore structure --- water absorption --- MIP --- fractal dimension --- pore connectivity --- T-shaped reinforced concrete beams --- CFRP --- numerical analysis --- non-destructive test (NDT) --- elastic wave --- air-entrained rubberized concrete --- stress-strain curve --- concrete failure --- damage of material --- effective modulus of elasticity --- effective stress --- hybrid-fiber-reinforced concrete --- shaft lining --- numerical simulation --- orthogonal test --- ultimate capacity
Choose an application
Concrete is one of the most widely used construction material in the word today. The research in concrete follows the environment impact, economy, population and advanced technology. This special issue presents the recent numerical study for research in concrete. The research topic includes the finite element analysis, digital concrete, reinforcement technique without rebars and 3D printing.
Technology: general issues --- History of engineering & technology --- cementitious composite --- nano-SiO2 --- PVA fiber --- durability evaluation --- adaptive neuro-fuzzy inference system --- aggregate type --- specimen shape --- specimen size --- compressive strength --- concrete mechanical properties --- concrete composites --- waste metalised polypropylene fibres --- durability --- sulphate and acid attacks --- palm oil fuel ash --- fiber-reinforced concrete --- blast resistance --- lattice discrete particle model-fiber --- damage mode --- contact detonation --- concrete brick --- FGD gypsum --- construction and demolition waste --- oil palm trunks --- sugarcane bagasse ash --- sensitivity analysis --- gene expression programming --- multiple linear and non-linear regression --- green concrete --- concrete-filled steel tube (CFST) --- axial capacity --- genetic engineering programming (GEP) --- Euler’s buckling load --- GEP-based model --- calcium silicate hydrate --- simulation --- concrete --- corrosion inhibitor --- grand canonical Monte Carlo method --- molecular dynamics --- adsorption --- coupled RBSM and solid FEM model --- PBL shear connector --- shear strength --- lateral pressures --- failure mechanism --- bamboo-reinforced concrete (BRC) --- stiffness prediction --- artificial neural network (ANN) --- radioactive waste --- long-term performance --- degradation --- modeling --- finite element analysis --- mechanical properties --- mechanisms --- diffusion --- material properties --- sodium alginate --- basalt fiber --- temperature --- impact resistance --- pre-packed aggregate fibre-reinforced concrete --- strength --- long-term shrinkage --- microstructure --- waste polypropylene fibres --- cohesion --- angle of shear deformation --- Mohr–Coulomb model --- induced tensile strength --- concrete samples --- Brazilian test --- finite element method (FEM) --- artificial neural networks --- confined concrete --- strength model --- FRP --- strain model --- RMSE --- forta fibers --- synthetic fibers --- hybrid fiber reinforced concrete --- constitutive modeling --- uniaxial test --- slump test --- pore structure --- water absorption --- MIP --- fractal dimension --- pore connectivity --- T-shaped reinforced concrete beams --- CFRP --- numerical analysis --- non-destructive test (NDT) --- elastic wave --- air-entrained rubberized concrete --- stress-strain curve --- concrete failure --- damage of material --- effective modulus of elasticity --- effective stress --- hybrid-fiber-reinforced concrete --- shaft lining --- numerical simulation --- orthogonal test --- ultimate capacity --- n/a --- Euler's buckling load --- Mohr-Coulomb model
Choose an application
Concrete is one of the most widely used construction material in the word today. The research in concrete follows the environment impact, economy, population and advanced technology. This special issue presents the recent numerical study for research in concrete. The research topic includes the finite element analysis, digital concrete, reinforcement technique without rebars and 3D printing.
cementitious composite --- nano-SiO2 --- PVA fiber --- durability evaluation --- adaptive neuro-fuzzy inference system --- aggregate type --- specimen shape --- specimen size --- compressive strength --- concrete mechanical properties --- concrete composites --- waste metalised polypropylene fibres --- durability --- sulphate and acid attacks --- palm oil fuel ash --- fiber-reinforced concrete --- blast resistance --- lattice discrete particle model-fiber --- damage mode --- contact detonation --- concrete brick --- FGD gypsum --- construction and demolition waste --- oil palm trunks --- sugarcane bagasse ash --- sensitivity analysis --- gene expression programming --- multiple linear and non-linear regression --- green concrete --- concrete-filled steel tube (CFST) --- axial capacity --- genetic engineering programming (GEP) --- Euler’s buckling load --- GEP-based model --- calcium silicate hydrate --- simulation --- concrete --- corrosion inhibitor --- grand canonical Monte Carlo method --- molecular dynamics --- adsorption --- coupled RBSM and solid FEM model --- PBL shear connector --- shear strength --- lateral pressures --- failure mechanism --- bamboo-reinforced concrete (BRC) --- stiffness prediction --- artificial neural network (ANN) --- radioactive waste --- long-term performance --- degradation --- modeling --- finite element analysis --- mechanical properties --- mechanisms --- diffusion --- material properties --- sodium alginate --- basalt fiber --- temperature --- impact resistance --- pre-packed aggregate fibre-reinforced concrete --- strength --- long-term shrinkage --- microstructure --- waste polypropylene fibres --- cohesion --- angle of shear deformation --- Mohr–Coulomb model --- induced tensile strength --- concrete samples --- Brazilian test --- finite element method (FEM) --- artificial neural networks --- confined concrete --- strength model --- FRP --- strain model --- RMSE --- forta fibers --- synthetic fibers --- hybrid fiber reinforced concrete --- constitutive modeling --- uniaxial test --- slump test --- pore structure --- water absorption --- MIP --- fractal dimension --- pore connectivity --- T-shaped reinforced concrete beams --- CFRP --- numerical analysis --- non-destructive test (NDT) --- elastic wave --- air-entrained rubberized concrete --- stress-strain curve --- concrete failure --- damage of material --- effective modulus of elasticity --- effective stress --- hybrid-fiber-reinforced concrete --- shaft lining --- numerical simulation --- orthogonal test --- ultimate capacity --- n/a --- Euler's buckling load --- Mohr-Coulomb model
Choose an application
Natural polymers are already used for a variety of biomedical applications, including drug delivery, wound healing, tissue engineering, biosensors, etc. However, they have also found other applications, for example, in the food industry, the pharmaceutical industry, as firefighting materials, water purification, etc. Different polysaccharide and protein-based systems have been developed. They each have their properties that render them useful for certain applications such as the water solubility of alginate, the thermo-sensitivity of chitosan, the abundance of cellulose and starch, or the cell adhesion and proliferation of gelatin and collagen. This Special Issue will explore the design, synthesis, processing, characterization, and applications of new functional natural-based polymers.
Research & information: general --- Biology, life sciences --- Biochemistry --- light conversion film --- cellulose acetate --- europium --- sensitization --- X-ray photoelectron spectroscopy --- surface plasmon resonance --- thin film --- quantum dot --- 4-(2-pyridylazo)resorcinol --- chitosan --- graphene oxide --- 3D printing --- carboxymethyl cellulose --- hydrogel --- lyophilization --- dissolution --- release model --- customization --- NO-donor --- topical release --- polymeric matrices --- microbial infections --- wound healing --- blood circulation --- semisynthetic polymers --- natural rubber --- rice husk ash --- alginate --- mechanical properties --- dielectric properties --- nanohydrogel --- food applications --- biopolymers --- polysaccharide --- neural network --- chicken feet --- sensorial quality --- food quality --- gelatine --- hyaluronic acid --- polyethylene oxide --- electrospinning --- nanofibers --- wound dressings --- pectin --- pectinase --- wheat bran --- banana peel --- Bacillus amyloliquefaciens --- prebiotics --- mucilage --- pectin polysaccharide --- Opuntia ficus-indica --- aloe vera --- acemannan --- Cactaceae --- Asphodelaceae --- porcine gastric mucin --- methacryloyl mucin --- double-cross-linked networks --- circular dichroism --- mechanical characterization --- date palm trunk mesh --- cellulose --- lignocellulosic waste --- alpha cellulose --- nanocellulose --- agro-byproduct --- Bacillus licheniformis --- bioconversion --- pomelo albedo --- sucrolytic --- lubricant --- tribology --- albumin deposition --- contact lens --- surface roughness --- bio-based polyurethanes --- prepolymers --- cellulose-derived polyol --- cellulose-citrate --- polyurethane composites --- poly(lactic acid) --- nanocomposites --- tannin --- lignin --- thermal degradation kinetics --- decomposition mechanism --- pyrolysis --- nanocomposite --- nanofertilizer --- slow release --- ammonia oxidase gene --- quantitative polymerase chain reaction --- microflora N cycle --- nutrient use efficiency --- soil N content --- aerogels --- cold plasma coating --- hydrophobization --- pore structure --- chitinous fishery wastes --- chitinase --- crab shells --- Paenibacillus --- N-acetyl-D-glucosamine --- phenol --- adhesive hydrogels --- nanomaterials --- surface modification --- latex --- lignocellulosic fibers --- conventional fillers --- CNC --- esterification reaction --- graft copolymerization --- hydrophobic modification --- flocculant --- crosslinking --- peptides --- glutaraldehyde --- specified risk materials --- laccase --- melanin --- decolorization --- natural mediators --- glycerol --- polymer electrolyte --- ionic conductivity --- biochemistry --- pH and rumen temperature --- protozoa --- zero valent iron --- nanoparticles --- ethylene glycol --- methylene blue --- polyhydroxyalkanoates --- poly(3-hydroxybutyrate-co-3-hydroxyhexanoate --- melt processing --- extrusion --- injection molding --- elongation at break --- crystallization --- DoE --- oil palm biomass waste --- anionic hydrogel --- swelling --- salt crosslinking agent --- CoNi nanocomposite --- cellulose paper --- antibacterial potential --- degradation --- annealing --- acetylation --- potato starch --- emulsion capacity --- FTIR --- Malva parviflora --- natural polymers --- physicochemical properties --- rheology --- birch wood --- pre-treatment --- process parameter --- lignocellulose --- 2-furaldehyde --- Komagataeibacter --- stretchable bacterial cellulose --- enhanced strain --- vitamin C --- collagen --- anisotropy --- electron irradiation --- tensile test --- activated carbon --- MnO2 --- Co NPs --- antibacterial activity --- hydrogels --- antimicrobial activities --- functionalized materials --- cellulose derivatives --- flexor tendon repair --- anti-inflammatory --- anti-adhesion --- antimicrobial --- polymer-based constructs --- biosorbent --- copper --- adsorption --- model studies --- aqueous medium --- biodegradable polymers --- chemical modification --- food packaging --- free radical polymerization --- superabsorbent --- water-retaining agent --- thermal properties --- Mimosa pudica mucilage --- extraction optimization --- Box-Behnken design --- response surface methodology --- pH-responsive on–off switching --- zero-order release --- antimicrobial activity --- bacterial cellulose --- cytotoxicity --- nisin --- stability
Choose an application
Natural polymers are already used for a variety of biomedical applications, including drug delivery, wound healing, tissue engineering, biosensors, etc. However, they have also found other applications, for example, in the food industry, the pharmaceutical industry, as firefighting materials, water purification, etc. Different polysaccharide and protein-based systems have been developed. They each have their properties that render them useful for certain applications such as the water solubility of alginate, the thermo-sensitivity of chitosan, the abundance of cellulose and starch, or the cell adhesion and proliferation of gelatin and collagen. This Special Issue will explore the design, synthesis, processing, characterization, and applications of new functional natural-based polymers.
light conversion film --- cellulose acetate --- europium --- sensitization --- X-ray photoelectron spectroscopy --- surface plasmon resonance --- thin film --- quantum dot --- 4-(2-pyridylazo)resorcinol --- chitosan --- graphene oxide --- 3D printing --- carboxymethyl cellulose --- hydrogel --- lyophilization --- dissolution --- release model --- customization --- NO-donor --- topical release --- polymeric matrices --- microbial infections --- wound healing --- blood circulation --- semisynthetic polymers --- natural rubber --- rice husk ash --- alginate --- mechanical properties --- dielectric properties --- nanohydrogel --- food applications --- biopolymers --- polysaccharide --- neural network --- chicken feet --- sensorial quality --- food quality --- gelatine --- hyaluronic acid --- polyethylene oxide --- electrospinning --- nanofibers --- wound dressings --- pectin --- pectinase --- wheat bran --- banana peel --- Bacillus amyloliquefaciens --- prebiotics --- mucilage --- pectin polysaccharide --- Opuntia ficus-indica --- aloe vera --- acemannan --- Cactaceae --- Asphodelaceae --- porcine gastric mucin --- methacryloyl mucin --- double-cross-linked networks --- circular dichroism --- mechanical characterization --- date palm trunk mesh --- cellulose --- lignocellulosic waste --- alpha cellulose --- nanocellulose --- agro-byproduct --- Bacillus licheniformis --- bioconversion --- pomelo albedo --- sucrolytic --- lubricant --- tribology --- albumin deposition --- contact lens --- surface roughness --- bio-based polyurethanes --- prepolymers --- cellulose-derived polyol --- cellulose-citrate --- polyurethane composites --- poly(lactic acid) --- nanocomposites --- tannin --- lignin --- thermal degradation kinetics --- decomposition mechanism --- pyrolysis --- nanocomposite --- nanofertilizer --- slow release --- ammonia oxidase gene --- quantitative polymerase chain reaction --- microflora N cycle --- nutrient use efficiency --- soil N content --- aerogels --- cold plasma coating --- hydrophobization --- pore structure --- chitinous fishery wastes --- chitinase --- crab shells --- Paenibacillus --- N-acetyl-D-glucosamine --- phenol --- adhesive hydrogels --- nanomaterials --- surface modification --- latex --- lignocellulosic fibers --- conventional fillers --- CNC --- esterification reaction --- graft copolymerization --- hydrophobic modification --- flocculant --- crosslinking --- peptides --- glutaraldehyde --- specified risk materials --- laccase --- melanin --- decolorization --- natural mediators --- glycerol --- polymer electrolyte --- ionic conductivity --- biochemistry --- pH and rumen temperature --- protozoa --- zero valent iron --- nanoparticles --- ethylene glycol --- methylene blue --- polyhydroxyalkanoates --- poly(3-hydroxybutyrate-co-3-hydroxyhexanoate --- melt processing --- extrusion --- injection molding --- elongation at break --- crystallization --- DoE --- oil palm biomass waste --- anionic hydrogel --- swelling --- salt crosslinking agent --- CoNi nanocomposite --- cellulose paper --- antibacterial potential --- degradation --- annealing --- acetylation --- potato starch --- emulsion capacity --- FTIR --- Malva parviflora --- natural polymers --- physicochemical properties --- rheology --- birch wood --- pre-treatment --- process parameter --- lignocellulose --- 2-furaldehyde --- Komagataeibacter --- stretchable bacterial cellulose --- enhanced strain --- vitamin C --- collagen --- anisotropy --- electron irradiation --- tensile test --- activated carbon --- MnO2 --- Co NPs --- antibacterial activity --- hydrogels --- antimicrobial activities --- functionalized materials --- cellulose derivatives --- flexor tendon repair --- anti-inflammatory --- anti-adhesion --- antimicrobial --- polymer-based constructs --- biosorbent --- copper --- adsorption --- model studies --- aqueous medium --- biodegradable polymers --- chemical modification --- food packaging --- free radical polymerization --- superabsorbent --- water-retaining agent --- thermal properties --- Mimosa pudica mucilage --- extraction optimization --- Box-Behnken design --- response surface methodology --- pH-responsive on–off switching --- zero-order release --- antimicrobial activity --- bacterial cellulose --- cytotoxicity --- nisin --- stability
Choose an application
Natural polymers are already used for a variety of biomedical applications, including drug delivery, wound healing, tissue engineering, biosensors, etc. However, they have also found other applications, for example, in the food industry, the pharmaceutical industry, as firefighting materials, water purification, etc. Different polysaccharide and protein-based systems have been developed. They each have their properties that render them useful for certain applications such as the water solubility of alginate, the thermo-sensitivity of chitosan, the abundance of cellulose and starch, or the cell adhesion and proliferation of gelatin and collagen. This Special Issue will explore the design, synthesis, processing, characterization, and applications of new functional natural-based polymers.
Research & information: general --- Biology, life sciences --- Biochemistry --- light conversion film --- cellulose acetate --- europium --- sensitization --- X-ray photoelectron spectroscopy --- surface plasmon resonance --- thin film --- quantum dot --- 4-(2-pyridylazo)resorcinol --- chitosan --- graphene oxide --- 3D printing --- carboxymethyl cellulose --- hydrogel --- lyophilization --- dissolution --- release model --- customization --- NO-donor --- topical release --- polymeric matrices --- microbial infections --- wound healing --- blood circulation --- semisynthetic polymers --- natural rubber --- rice husk ash --- alginate --- mechanical properties --- dielectric properties --- nanohydrogel --- food applications --- biopolymers --- polysaccharide --- neural network --- chicken feet --- sensorial quality --- food quality --- gelatine --- hyaluronic acid --- polyethylene oxide --- electrospinning --- nanofibers --- wound dressings --- pectin --- pectinase --- wheat bran --- banana peel --- Bacillus amyloliquefaciens --- prebiotics --- mucilage --- pectin polysaccharide --- Opuntia ficus-indica --- aloe vera --- acemannan --- Cactaceae --- Asphodelaceae --- porcine gastric mucin --- methacryloyl mucin --- double-cross-linked networks --- circular dichroism --- mechanical characterization --- date palm trunk mesh --- cellulose --- lignocellulosic waste --- alpha cellulose --- nanocellulose --- agro-byproduct --- Bacillus licheniformis --- bioconversion --- pomelo albedo --- sucrolytic --- lubricant --- tribology --- albumin deposition --- contact lens --- surface roughness --- bio-based polyurethanes --- prepolymers --- cellulose-derived polyol --- cellulose-citrate --- polyurethane composites --- poly(lactic acid) --- nanocomposites --- tannin --- lignin --- thermal degradation kinetics --- decomposition mechanism --- pyrolysis --- nanocomposite --- nanofertilizer --- slow release --- ammonia oxidase gene --- quantitative polymerase chain reaction --- microflora N cycle --- nutrient use efficiency --- soil N content --- aerogels --- cold plasma coating --- hydrophobization --- pore structure --- chitinous fishery wastes --- chitinase --- crab shells --- Paenibacillus --- N-acetyl-D-glucosamine --- phenol --- adhesive hydrogels --- nanomaterials --- surface modification --- latex --- lignocellulosic fibers --- conventional fillers --- CNC --- esterification reaction --- graft copolymerization --- hydrophobic modification --- flocculant --- crosslinking --- peptides --- glutaraldehyde --- specified risk materials --- laccase --- melanin --- decolorization --- natural mediators --- glycerol --- polymer electrolyte --- ionic conductivity --- biochemistry --- pH and rumen temperature --- protozoa --- zero valent iron --- nanoparticles --- ethylene glycol --- methylene blue --- polyhydroxyalkanoates --- poly(3-hydroxybutyrate-co-3-hydroxyhexanoate --- melt processing --- extrusion --- injection molding --- elongation at break --- crystallization --- DoE --- oil palm biomass waste --- anionic hydrogel --- swelling --- salt crosslinking agent --- CoNi nanocomposite --- cellulose paper --- antibacterial potential --- degradation --- annealing --- acetylation --- potato starch --- emulsion capacity --- FTIR --- Malva parviflora --- natural polymers --- physicochemical properties --- rheology --- birch wood --- pre-treatment --- process parameter --- lignocellulose --- 2-furaldehyde --- Komagataeibacter --- stretchable bacterial cellulose --- enhanced strain --- vitamin C --- collagen --- anisotropy --- electron irradiation --- tensile test --- activated carbon --- MnO2 --- Co NPs --- antibacterial activity --- hydrogels --- antimicrobial activities --- functionalized materials --- cellulose derivatives --- flexor tendon repair --- anti-inflammatory --- anti-adhesion --- antimicrobial --- polymer-based constructs --- biosorbent --- copper --- adsorption --- model studies --- aqueous medium --- biodegradable polymers --- chemical modification --- food packaging --- free radical polymerization --- superabsorbent --- water-retaining agent --- thermal properties --- Mimosa pudica mucilage --- extraction optimization --- Box-Behnken design --- response surface methodology --- pH-responsive on–off switching --- zero-order release --- antimicrobial activity --- bacterial cellulose --- cytotoxicity --- nisin --- stability --- light conversion film --- cellulose acetate --- europium --- sensitization --- X-ray photoelectron spectroscopy --- surface plasmon resonance --- thin film --- quantum dot --- 4-(2-pyridylazo)resorcinol --- chitosan --- graphene oxide --- 3D printing --- carboxymethyl cellulose --- hydrogel --- lyophilization --- dissolution --- release model --- customization --- NO-donor --- topical release --- polymeric matrices --- microbial infections --- wound healing --- blood circulation --- semisynthetic polymers --- natural rubber --- rice husk ash --- alginate --- mechanical properties --- dielectric properties --- nanohydrogel --- food applications --- biopolymers --- polysaccharide --- neural network --- chicken feet --- sensorial quality --- food quality --- gelatine --- hyaluronic acid --- polyethylene oxide --- electrospinning --- nanofibers --- wound dressings --- pectin --- pectinase --- wheat bran --- banana peel --- Bacillus amyloliquefaciens --- prebiotics --- mucilage --- pectin polysaccharide --- Opuntia ficus-indica --- aloe vera --- acemannan --- Cactaceae --- Asphodelaceae --- porcine gastric mucin --- methacryloyl mucin --- double-cross-linked networks --- circular dichroism --- mechanical characterization --- date palm trunk mesh --- cellulose --- lignocellulosic waste --- alpha cellulose --- nanocellulose --- agro-byproduct --- Bacillus licheniformis --- bioconversion --- pomelo albedo --- sucrolytic --- lubricant --- tribology --- albumin deposition --- contact lens --- surface roughness --- bio-based polyurethanes --- prepolymers --- cellulose-derived polyol --- cellulose-citrate --- polyurethane composites --- poly(lactic acid) --- nanocomposites --- tannin --- lignin --- thermal degradation kinetics --- decomposition mechanism --- pyrolysis --- nanocomposite --- nanofertilizer --- slow release --- ammonia oxidase gene --- quantitative polymerase chain reaction --- microflora N cycle --- nutrient use efficiency --- soil N content --- aerogels --- cold plasma coating --- hydrophobization --- pore structure --- chitinous fishery wastes --- chitinase --- crab shells --- Paenibacillus --- N-acetyl-D-glucosamine --- phenol --- adhesive hydrogels --- nanomaterials --- surface modification --- latex --- lignocellulosic fibers --- conventional fillers --- CNC --- esterification reaction --- graft copolymerization --- hydrophobic modification --- flocculant --- crosslinking --- peptides --- glutaraldehyde --- specified risk materials --- laccase --- melanin --- decolorization --- natural mediators --- glycerol --- polymer electrolyte --- ionic conductivity --- biochemistry --- pH and rumen temperature --- protozoa --- zero valent iron --- nanoparticles --- ethylene glycol --- methylene blue --- polyhydroxyalkanoates --- poly(3-hydroxybutyrate-co-3-hydroxyhexanoate --- melt processing --- extrusion --- injection molding --- elongation at break --- crystallization --- DoE --- oil palm biomass waste --- anionic hydrogel --- swelling --- salt crosslinking agent --- CoNi nanocomposite --- cellulose paper --- antibacterial potential --- degradation --- annealing --- acetylation --- potato starch --- emulsion capacity --- FTIR --- Malva parviflora --- natural polymers --- physicochemical properties --- rheology --- birch wood --- pre-treatment --- process parameter --- lignocellulose --- 2-furaldehyde --- Komagataeibacter --- stretchable bacterial cellulose --- enhanced strain --- vitamin C --- collagen --- anisotropy --- electron irradiation --- tensile test --- activated carbon --- MnO2 --- Co NPs --- antibacterial activity --- hydrogels --- antimicrobial activities --- functionalized materials --- cellulose derivatives --- flexor tendon repair --- anti-inflammatory --- anti-adhesion --- antimicrobial --- polymer-based constructs --- biosorbent --- copper --- adsorption --- model studies --- aqueous medium --- biodegradable polymers --- chemical modification --- food packaging --- free radical polymerization --- superabsorbent --- water-retaining agent --- thermal properties --- Mimosa pudica mucilage --- extraction optimization --- Box-Behnken design --- response surface methodology --- pH-responsive on–off switching --- zero-order release --- antimicrobial activity --- bacterial cellulose --- cytotoxicity --- nisin --- stability
Listing 1 - 9 of 9 |
Sort by
|