Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2022 (6)

Listing 1 - 6 of 6
Sort by

Book
Advances in the Field of Electrical Machines and Drives
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Electrical machines and drives dominate our everyday lives. This is due to their numerous applications in industry, power production, home appliances, and transportation systems such as electric and hybrid electric vehicles, ships, and aircrafts. Their development follows rapid advances in science, engineering, and technology. Researchers around the world are extensively investigating electrical machines and drives because of their reliability, efficiency, performance, and fault-tolerant structure. In particular, there is a focus on the importance of utilizing these new trends in technology for energy saving and reducing greenhouse gas emissions. This Special Issue will provide the platform for researchers to present their recent work on advances in the field of electrical machines and drives, including special machines and their applications; new materials, including the insulation of electrical machines; new trends in diagnostics and condition monitoring; power electronics, control schemes, and algorithms for electrical drives; new topologies; and innovative applications.

Keywords

Technology: general issues --- History of engineering & technology --- fault size --- inter-laminar fault --- localized losses --- thermographic measurement --- thermal-electric coupling --- axial flux --- demagnetization --- finite element analysis --- permanent magnet --- static eccentricity --- synchronous generator --- power loss minimization --- speed control drive systems --- efficiency measurement --- IPMSM --- additive manufacturing --- three-dimensional printing --- topology optimization --- magnetic materials --- soft magnetic materials --- permanent magnets --- electrical machines --- torque ripple --- 6th harmonic --- induction motor --- AC machine --- PWM inverter --- space phasor modulation --- electric motor --- interior permanent magnet --- reluctance --- MMF-permeance --- winding function --- predictive maintenance --- digital twin --- artificial intelligence --- Industry 4.0 --- data handling --- life cycle --- electric machines --- electromagnetic analysis --- electromagnetic measurements --- core losses --- rotor flux linkage --- modular stator --- oriented steel --- flux-injecting probes --- insulation system --- partial discharges --- capacitive model --- MATLAB/Simulink --- flashover voltage --- epoxy resin --- matrix-converter --- input AC filter design --- PMSM --- predictive control --- electrical drives --- energy efficiency --- energy-saving --- power quality --- current signals --- stray flux signals --- LDA --- automatic fault diagnosis --- broken rotor bars --- soft-starters


Book
Performance of Induction Machines
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Induction machines are one of the most important technical applications for both the industrial world and private use. Since their invention (achievements of Galileo Ferraris, Nikola Tesla, and Michal Doliwo-Dobrowolski), they have been widely used in different electrical drives and as generators, thanks to their features such as reliability, durability, low price, high efficiency, and resistance to failure. The methods for designing and using induction machines are similar to the methods used in other electric machines but have their own specificity. Many issues discussed here are based on the fundamental achievements of authors such as Nasar, Boldea, Yamamura, Tegopoulos, and Kriezis, who laid the foundations for the development of induction machines, which are still relevant today. The control algorithms are based on the achievements of Blaschke (field vector-oriented control) and Depenbrock or Takahashi (direct torque control), who created standards for the control of induction machines. Today’s induction machines must meet very stringent requirements of reliability, high efficiency, and performance. Thanks to the application of highly efficient numerical algorithms, it is possible to design induction machines faster and at a lower cost. At the same time, progress in materials science and technology enables the development of new machine topologies. The main objective of this book is to contribute to the development of induction machines in all areas of their applications.


Book
Advances in the Field of Electrical Machines and Drives
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Electrical machines and drives dominate our everyday lives. This is due to their numerous applications in industry, power production, home appliances, and transportation systems such as electric and hybrid electric vehicles, ships, and aircrafts. Their development follows rapid advances in science, engineering, and technology. Researchers around the world are extensively investigating electrical machines and drives because of their reliability, efficiency, performance, and fault-tolerant structure. In particular, there is a focus on the importance of utilizing these new trends in technology for energy saving and reducing greenhouse gas emissions. This Special Issue will provide the platform for researchers to present their recent work on advances in the field of electrical machines and drives, including special machines and their applications; new materials, including the insulation of electrical machines; new trends in diagnostics and condition monitoring; power electronics, control schemes, and algorithms for electrical drives; new topologies; and innovative applications.


Book
Performance of Induction Machines
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Induction machines are one of the most important technical applications for both the industrial world and private use. Since their invention (achievements of Galileo Ferraris, Nikola Tesla, and Michal Doliwo-Dobrowolski), they have been widely used in different electrical drives and as generators, thanks to their features such as reliability, durability, low price, high efficiency, and resistance to failure. The methods for designing and using induction machines are similar to the methods used in other electric machines but have their own specificity. Many issues discussed here are based on the fundamental achievements of authors such as Nasar, Boldea, Yamamura, Tegopoulos, and Kriezis, who laid the foundations for the development of induction machines, which are still relevant today. The control algorithms are based on the achievements of Blaschke (field vector-oriented control) and Depenbrock or Takahashi (direct torque control), who created standards for the control of induction machines. Today’s induction machines must meet very stringent requirements of reliability, high efficiency, and performance. Thanks to the application of highly efficient numerical algorithms, it is possible to design induction machines faster and at a lower cost. At the same time, progress in materials science and technology enables the development of new machine topologies. The main objective of this book is to contribute to the development of induction machines in all areas of their applications.


Book
Advances in the Field of Electrical Machines and Drives
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Electrical machines and drives dominate our everyday lives. This is due to their numerous applications in industry, power production, home appliances, and transportation systems such as electric and hybrid electric vehicles, ships, and aircrafts. Their development follows rapid advances in science, engineering, and technology. Researchers around the world are extensively investigating electrical machines and drives because of their reliability, efficiency, performance, and fault-tolerant structure. In particular, there is a focus on the importance of utilizing these new trends in technology for energy saving and reducing greenhouse gas emissions. This Special Issue will provide the platform for researchers to present their recent work on advances in the field of electrical machines and drives, including special machines and their applications; new materials, including the insulation of electrical machines; new trends in diagnostics and condition monitoring; power electronics, control schemes, and algorithms for electrical drives; new topologies; and innovative applications.

Keywords

Technology: general issues --- History of engineering & technology --- fault size --- inter-laminar fault --- localized losses --- thermographic measurement --- thermal-electric coupling --- axial flux --- demagnetization --- finite element analysis --- permanent magnet --- static eccentricity --- synchronous generator --- power loss minimization --- speed control drive systems --- efficiency measurement --- IPMSM --- additive manufacturing --- three-dimensional printing --- topology optimization --- magnetic materials --- soft magnetic materials --- permanent magnets --- electrical machines --- torque ripple --- 6th harmonic --- induction motor --- AC machine --- PWM inverter --- space phasor modulation --- electric motor --- interior permanent magnet --- reluctance --- MMF-permeance --- winding function --- predictive maintenance --- digital twin --- artificial intelligence --- Industry 4.0 --- data handling --- life cycle --- electric machines --- electromagnetic analysis --- electromagnetic measurements --- core losses --- rotor flux linkage --- modular stator --- oriented steel --- flux-injecting probes --- insulation system --- partial discharges --- capacitive model --- MATLAB/Simulink --- flashover voltage --- epoxy resin --- matrix-converter --- input AC filter design --- PMSM --- predictive control --- electrical drives --- energy efficiency --- energy-saving --- power quality --- current signals --- stray flux signals --- LDA --- automatic fault diagnosis --- broken rotor bars --- soft-starters --- fault size --- inter-laminar fault --- localized losses --- thermographic measurement --- thermal-electric coupling --- axial flux --- demagnetization --- finite element analysis --- permanent magnet --- static eccentricity --- synchronous generator --- power loss minimization --- speed control drive systems --- efficiency measurement --- IPMSM --- additive manufacturing --- three-dimensional printing --- topology optimization --- magnetic materials --- soft magnetic materials --- permanent magnets --- electrical machines --- torque ripple --- 6th harmonic --- induction motor --- AC machine --- PWM inverter --- space phasor modulation --- electric motor --- interior permanent magnet --- reluctance --- MMF-permeance --- winding function --- predictive maintenance --- digital twin --- artificial intelligence --- Industry 4.0 --- data handling --- life cycle --- electric machines --- electromagnetic analysis --- electromagnetic measurements --- core losses --- rotor flux linkage --- modular stator --- oriented steel --- flux-injecting probes --- insulation system --- partial discharges --- capacitive model --- MATLAB/Simulink --- flashover voltage --- epoxy resin --- matrix-converter --- input AC filter design --- PMSM --- predictive control --- electrical drives --- energy efficiency --- energy-saving --- power quality --- current signals --- stray flux signals --- LDA --- automatic fault diagnosis --- broken rotor bars --- soft-starters


Book
Performance of Induction Machines
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Induction machines are one of the most important technical applications for both the industrial world and private use. Since their invention (achievements of Galileo Ferraris, Nikola Tesla, and Michal Doliwo-Dobrowolski), they have been widely used in different electrical drives and as generators, thanks to their features such as reliability, durability, low price, high efficiency, and resistance to failure. The methods for designing and using induction machines are similar to the methods used in other electric machines but have their own specificity. Many issues discussed here are based on the fundamental achievements of authors such as Nasar, Boldea, Yamamura, Tegopoulos, and Kriezis, who laid the foundations for the development of induction machines, which are still relevant today. The control algorithms are based on the achievements of Blaschke (field vector-oriented control) and Depenbrock or Takahashi (direct torque control), who created standards for the control of induction machines. Today’s induction machines must meet very stringent requirements of reliability, high efficiency, and performance. Thanks to the application of highly efficient numerical algorithms, it is possible to design induction machines faster and at a lower cost. At the same time, progress in materials science and technology enables the development of new machine topologies. The main objective of this book is to contribute to the development of induction machines in all areas of their applications.

Keywords

Technology: general issues --- History of engineering & technology --- LIM --- slip frequency --- linear induction motor --- automatic train operation --- rotor field-oriented angle error --- indirect rotor field-oriented control --- induction machine drives --- model-based prediction --- linear induction motors --- finite element analysis --- end effect --- induction machines --- electrical machines --- thermal modeling --- soft magnetic material --- thermal conductivity --- induction motor --- solid rotor --- effective parameters --- finite element method --- modelling of ring induction motors --- Monte Carlo method --- accurate modelling --- induction machine --- electromagnetic models --- model selection --- optimization --- artificial neural networks --- pattern search --- evolutionary strategy --- simulated annealing --- artificial neural network --- fourth central moment --- homogeneity analysis --- induction motors --- mechanical unbalance --- one broken rotor bar --- outer-race bearing fault --- startup transient current --- two broken rotor bars --- three-phase induction motor --- squirrel-cage rotor --- energy efficiency --- motor performance --- dynamic model --- Matlab/Simulink --- rotor winding --- stator winding --- LIM --- slip frequency --- linear induction motor --- automatic train operation --- rotor field-oriented angle error --- indirect rotor field-oriented control --- induction machine drives --- model-based prediction --- linear induction motors --- finite element analysis --- end effect --- induction machines --- electrical machines --- thermal modeling --- soft magnetic material --- thermal conductivity --- induction motor --- solid rotor --- effective parameters --- finite element method --- modelling of ring induction motors --- Monte Carlo method --- accurate modelling --- induction machine --- electromagnetic models --- model selection --- optimization --- artificial neural networks --- pattern search --- evolutionary strategy --- simulated annealing --- artificial neural network --- fourth central moment --- homogeneity analysis --- induction motors --- mechanical unbalance --- one broken rotor bar --- outer-race bearing fault --- startup transient current --- two broken rotor bars --- three-phase induction motor --- squirrel-cage rotor --- energy efficiency --- motor performance --- dynamic model --- Matlab/Simulink --- rotor winding --- stator winding

Listing 1 - 6 of 6
Sort by