Listing 1 - 10 of 102 | << page >> |
Sort by
|
Choose an application
The objective of this paper is to discuss the European electricity market design. Indeed, there is a heated debate ongoing concerning the need of a refiguration of the latter, fueled by growing inefficiencies: the electricity pricing in the European market is based on a model of large bidding zones, meaning that wholesale markets are cleared as if there was no internal network congestion. However, neglecting the latter, the zonal market clearing may result in infeasible power flows within those bidding zones. This causes issues that are taken care of, generally with the mean of redispatching, which consists in a change in production and consumption patterns at either side of a grid bottleneck to change the flow and relieve congestion. At the early days of market coupling, those congestions were rare and without any bigger consequences. However, with the energy transition and a mismatch between grid and generation expansion, congestion has increased significantly, and pressure on congestion management is increasing. For this paper, a literature review-based approach was adopted to address the question whether adjustments in the zonal market could be sufficient, or if a fundamental change in the latter is required. Three potential options addressing these zonal inefficiencies are presented and analyzed. The aim is to offer a non-biased overview of advantages and disadvantages of each of these options. Two of the options, both consisting in an integral change in the design of the bidding zones (a reconfiguration of bidding zones and a switch to nodal systems) were found to be too disruptive, difficult or time-consuming to implement. A third option analyzed the approach of a market-based redispatch instead of a regulated one. Indeed, this option together with strategic grid reinforcement seems like a cost-efficient and feasible solution, however accompanied by strategic bidding risks which would need to be addressed with the right mitigation strategies.
Choose an application
Textbook of Arterial Stiffness and Pulsatile Hemodynamics in Health and Disease, Two Volume Set covers the principles, physiology, biologic pathways, clinical implications and therapeutics surrounding arterial stiffness and pulsatile hemodynamics, along with a thorough overview of the field. The book presents complex engineering concepts in a way that those in science and medicine can more easily understand. It includes detailed illustrations. Additionally, it presents advanced bioengineering concepts in boxes for readers who wants more in-depth biophysical knowledge. This is a must-have reference for students, researchers and clinicians interested in learning more about this field.
Arteries --- Hemodynamics. --- Hemodynamics --- Diseases. --- Hemodynamic --- Neurovascular Coupling --- Blood Circulation --- Blood --- Cardiac output --- Hydrodynamics --- Circulation --- Elastic properties. --- Arterial elasticity --- Biomechanics --- Elasticity --- Vascular Stiffness --- Pulsatile Flow --- Models, Theoretical
Choose an application
This Special Issue contains 12 papers devoted to fluid/structure interaction (FSI) problems. The main feature of the problems is an interface on which consistent boundary conditions for both the liquid and the solid regions are formulated. The presented studies cover a wide range of problems and methods for their solution, including problems of weak, or one-way interaction, in which the effect of interface deformation on the fluid flow can be neglected, as well as problems of the strong interaction, for which the interface change affects both the flow and the structure behaviour. The interest in FSI problems is very great due to their practical importance. Recent developments in engineering have led to advanced formulations of FSI problems. Some of them could not be formulated several years ago. The presented papers demonstrate progress in both numerical algorithms, mathematical apparatus and advanced computational techniques. In this issue, we have tried to collect different FSI problems, new mathematical and numerical approaches, new numerical techniques and, of course, new results, which can provide an insight into FSI processes.
Technology: general issues --- History of engineering & technology --- vortex-induced vibration --- higher mode --- flexible pipe --- oscillatory flow --- motion trajectory --- lock-in --- dominant frequency --- time-varying --- lifeboat --- freefall --- ship motion --- Kane’s method --- one-way coupling --- CFD-DEM --- ice resistance --- ice crack --- fluid–structure interaction --- flexible beam --- high speed imaging --- system coupling --- coastal structure --- fluid-structure interaction --- engineering design parameters --- environment protection --- intake velocity --- velocity cap --- axial hydraulic force --- stress --- deformation --- pump turbine --- starting-up --- cutting ratio --- codend --- hydrodynamic characteristics --- fluttering motions --- the Fourier series --- marine centrifugal pump --- vibration excitation source --- fluid excitation --- electromagnetic excitation --- numerical simulation --- OpenFOAM --- one-way approach --- structural analysis --- open water test --- computational fluid dynamics --- numerical analysis --- fluid mechanics --- blade design --- propeller --- hydraulic machinery runner --- wet modal analysis --- acoustic–structure coupling --- boundary condition --- marine growth --- hydrodynamic loading --- roughness --- mussels --- morison coefficients --- cavity detachment --- free streamlines --- Brillouin criterion --- n/a --- Kane's method --- acoustic-structure coupling
Choose an application
This Special Issue contains 12 papers devoted to fluid/structure interaction (FSI) problems. The main feature of the problems is an interface on which consistent boundary conditions for both the liquid and the solid regions are formulated. The presented studies cover a wide range of problems and methods for their solution, including problems of weak, or one-way interaction, in which the effect of interface deformation on the fluid flow can be neglected, as well as problems of the strong interaction, for which the interface change affects both the flow and the structure behaviour. The interest in FSI problems is very great due to their practical importance. Recent developments in engineering have led to advanced formulations of FSI problems. Some of them could not be formulated several years ago. The presented papers demonstrate progress in both numerical algorithms, mathematical apparatus and advanced computational techniques. In this issue, we have tried to collect different FSI problems, new mathematical and numerical approaches, new numerical techniques and, of course, new results, which can provide an insight into FSI processes.
vortex-induced vibration --- higher mode --- flexible pipe --- oscillatory flow --- motion trajectory --- lock-in --- dominant frequency --- time-varying --- lifeboat --- freefall --- ship motion --- Kane’s method --- one-way coupling --- CFD-DEM --- ice resistance --- ice crack --- fluid–structure interaction --- flexible beam --- high speed imaging --- system coupling --- coastal structure --- fluid-structure interaction --- engineering design parameters --- environment protection --- intake velocity --- velocity cap --- axial hydraulic force --- stress --- deformation --- pump turbine --- starting-up --- cutting ratio --- codend --- hydrodynamic characteristics --- fluttering motions --- the Fourier series --- marine centrifugal pump --- vibration excitation source --- fluid excitation --- electromagnetic excitation --- numerical simulation --- OpenFOAM --- one-way approach --- structural analysis --- open water test --- computational fluid dynamics --- numerical analysis --- fluid mechanics --- blade design --- propeller --- hydraulic machinery runner --- wet modal analysis --- acoustic–structure coupling --- boundary condition --- marine growth --- hydrodynamic loading --- roughness --- mussels --- morison coefficients --- cavity detachment --- free streamlines --- Brillouin criterion --- n/a --- Kane's method --- acoustic-structure coupling
Choose an application
The aim of this book is to highlight some recent advances in microwave planar devices. The development of planar technologies still generates great interest because of their many applications in fields as diverse as wireless communications, medical instrumentation, remote sensing, etc. In this book, particular interest has been focused on an electronically controllable phase shifter, wireless sensing, a multiband textile antenna, a MIMO antenna in microstrip technology, a miniaturized spoof plasmonic antipodal Vivaldi antenna, a dual-band balanced bandpass filter, glide-symmetric structures, a transparent multiband antenna for vehicle communications, a multilayer bandpass filter with high selectivity, microwave planar cutoff probes, and a wideband transition from microstrip to ridge empty substrate integrated waveguide.
Technology: general issues --- History of engineering & technology --- microwave tunable phase shifters --- 3 dB/90° coupler --- K band --- HD --- MSP --- RF --- SVM --- wireless sensing technology --- antenna design --- constrained optimization problems --- coral reefs optimization algorithm --- meta-heuristics --- antenna --- MIMO --- octagonal --- planar --- UWB --- vivaldi antenna --- miniaturized --- high gain --- surface plasmons --- ultrawideband --- microwave sensor --- differential sensor --- dielectric characterization --- microfluidics --- electrically small resonators --- biosensors --- dual-band differential filter --- common-mode suppression --- magnetic coupling --- multilayer structure --- glide symmetry --- higher symmetries --- Maxwell fish-eye lens --- metasurface --- periodic structures --- printed circuit board --- coplanar waveguides --- vehicular networks --- IEEE 802.11p --- indium-tin oxide (ITO) --- transparent antenna --- bandpass filter --- discriminating coupling --- high selectivity --- source-load coupling --- plasma diagnostics --- electron density measurement --- planar microwave cutoff probe --- bar-type cutoff probe --- ring-type cutoff probe --- computational characterization --- substrate integrated waveguide --- ridge waveguide --- tapering structure --- broadband --- microwave devices --- n/a
Choose an application
The aim of this book is to highlight some recent advances in microwave planar devices. The development of planar technologies still generates great interest because of their many applications in fields as diverse as wireless communications, medical instrumentation, remote sensing, etc. In this book, particular interest has been focused on an electronically controllable phase shifter, wireless sensing, a multiband textile antenna, a MIMO antenna in microstrip technology, a miniaturized spoof plasmonic antipodal Vivaldi antenna, a dual-band balanced bandpass filter, glide-symmetric structures, a transparent multiband antenna for vehicle communications, a multilayer bandpass filter with high selectivity, microwave planar cutoff probes, and a wideband transition from microstrip to ridge empty substrate integrated waveguide.
microwave tunable phase shifters --- 3 dB/90° coupler --- K band --- HD --- MSP --- RF --- SVM --- wireless sensing technology --- antenna design --- constrained optimization problems --- coral reefs optimization algorithm --- meta-heuristics --- antenna --- MIMO --- octagonal --- planar --- UWB --- vivaldi antenna --- miniaturized --- high gain --- surface plasmons --- ultrawideband --- microwave sensor --- differential sensor --- dielectric characterization --- microfluidics --- electrically small resonators --- biosensors --- dual-band differential filter --- common-mode suppression --- magnetic coupling --- multilayer structure --- glide symmetry --- higher symmetries --- Maxwell fish-eye lens --- metasurface --- periodic structures --- printed circuit board --- coplanar waveguides --- vehicular networks --- IEEE 802.11p --- indium-tin oxide (ITO) --- transparent antenna --- bandpass filter --- discriminating coupling --- high selectivity --- source-load coupling --- plasma diagnostics --- electron density measurement --- planar microwave cutoff probe --- bar-type cutoff probe --- ring-type cutoff probe --- computational characterization --- substrate integrated waveguide --- ridge waveguide --- tapering structure --- broadband --- microwave devices --- n/a
Choose an application
The aim of this book is to highlight some recent advances in microwave planar devices. The development of planar technologies still generates great interest because of their many applications in fields as diverse as wireless communications, medical instrumentation, remote sensing, etc. In this book, particular interest has been focused on an electronically controllable phase shifter, wireless sensing, a multiband textile antenna, a MIMO antenna in microstrip technology, a miniaturized spoof plasmonic antipodal Vivaldi antenna, a dual-band balanced bandpass filter, glide-symmetric structures, a transparent multiband antenna for vehicle communications, a multilayer bandpass filter with high selectivity, microwave planar cutoff probes, and a wideband transition from microstrip to ridge empty substrate integrated waveguide.
Technology: general issues --- History of engineering & technology --- microwave tunable phase shifters --- 3 dB/90° coupler --- K band --- HD --- MSP --- RF --- SVM --- wireless sensing technology --- antenna design --- constrained optimization problems --- coral reefs optimization algorithm --- meta-heuristics --- antenna --- MIMO --- octagonal --- planar --- UWB --- vivaldi antenna --- miniaturized --- high gain --- surface plasmons --- ultrawideband --- microwave sensor --- differential sensor --- dielectric characterization --- microfluidics --- electrically small resonators --- biosensors --- dual-band differential filter --- common-mode suppression --- magnetic coupling --- multilayer structure --- glide symmetry --- higher symmetries --- Maxwell fish-eye lens --- metasurface --- periodic structures --- printed circuit board --- coplanar waveguides --- vehicular networks --- IEEE 802.11p --- indium-tin oxide (ITO) --- transparent antenna --- bandpass filter --- discriminating coupling --- high selectivity --- source-load coupling --- plasma diagnostics --- electron density measurement --- planar microwave cutoff probe --- bar-type cutoff probe --- ring-type cutoff probe --- computational characterization --- substrate integrated waveguide --- ridge waveguide --- tapering structure --- broadband --- microwave devices --- microwave tunable phase shifters --- 3 dB/90° coupler --- K band --- HD --- MSP --- RF --- SVM --- wireless sensing technology --- antenna design --- constrained optimization problems --- coral reefs optimization algorithm --- meta-heuristics --- antenna --- MIMO --- octagonal --- planar --- UWB --- vivaldi antenna --- miniaturized --- high gain --- surface plasmons --- ultrawideband --- microwave sensor --- differential sensor --- dielectric characterization --- microfluidics --- electrically small resonators --- biosensors --- dual-band differential filter --- common-mode suppression --- magnetic coupling --- multilayer structure --- glide symmetry --- higher symmetries --- Maxwell fish-eye lens --- metasurface --- periodic structures --- printed circuit board --- coplanar waveguides --- vehicular networks --- IEEE 802.11p --- indium-tin oxide (ITO) --- transparent antenna --- bandpass filter --- discriminating coupling --- high selectivity --- source-load coupling --- plasma diagnostics --- electron density measurement --- planar microwave cutoff probe --- bar-type cutoff probe --- ring-type cutoff probe --- computational characterization --- substrate integrated waveguide --- ridge waveguide --- tapering structure --- broadband --- microwave devices
Choose an application
This Special Issue contains 12 papers devoted to fluid/structure interaction (FSI) problems. The main feature of the problems is an interface on which consistent boundary conditions for both the liquid and the solid regions are formulated. The presented studies cover a wide range of problems and methods for their solution, including problems of weak, or one-way interaction, in which the effect of interface deformation on the fluid flow can be neglected, as well as problems of the strong interaction, for which the interface change affects both the flow and the structure behaviour. The interest in FSI problems is very great due to their practical importance. Recent developments in engineering have led to advanced formulations of FSI problems. Some of them could not be formulated several years ago. The presented papers demonstrate progress in both numerical algorithms, mathematical apparatus and advanced computational techniques. In this issue, we have tried to collect different FSI problems, new mathematical and numerical approaches, new numerical techniques and, of course, new results, which can provide an insight into FSI processes.
Technology: general issues --- History of engineering & technology --- vortex-induced vibration --- higher mode --- flexible pipe --- oscillatory flow --- motion trajectory --- lock-in --- dominant frequency --- time-varying --- lifeboat --- freefall --- ship motion --- Kane's method --- one-way coupling --- CFD-DEM --- ice resistance --- ice crack --- fluid-structure interaction --- flexible beam --- high speed imaging --- system coupling --- coastal structure --- fluid-structure interaction --- engineering design parameters --- environment protection --- intake velocity --- velocity cap --- axial hydraulic force --- stress --- deformation --- pump turbine --- starting-up --- cutting ratio --- codend --- hydrodynamic characteristics --- fluttering motions --- the Fourier series --- marine centrifugal pump --- vibration excitation source --- fluid excitation --- electromagnetic excitation --- numerical simulation --- OpenFOAM --- one-way approach --- structural analysis --- open water test --- computational fluid dynamics --- numerical analysis --- fluid mechanics --- blade design --- propeller --- hydraulic machinery runner --- wet modal analysis --- acoustic-structure coupling --- boundary condition --- marine growth --- hydrodynamic loading --- roughness --- mussels --- morison coefficients --- cavity detachment --- free streamlines --- Brillouin criterion --- vortex-induced vibration --- higher mode --- flexible pipe --- oscillatory flow --- motion trajectory --- lock-in --- dominant frequency --- time-varying --- lifeboat --- freefall --- ship motion --- Kane's method --- one-way coupling --- CFD-DEM --- ice resistance --- ice crack --- fluid-structure interaction --- flexible beam --- high speed imaging --- system coupling --- coastal structure --- fluid-structure interaction --- engineering design parameters --- environment protection --- intake velocity --- velocity cap --- axial hydraulic force --- stress --- deformation --- pump turbine --- starting-up --- cutting ratio --- codend --- hydrodynamic characteristics --- fluttering motions --- the Fourier series --- marine centrifugal pump --- vibration excitation source --- fluid excitation --- electromagnetic excitation --- numerical simulation --- OpenFOAM --- one-way approach --- structural analysis --- open water test --- computational fluid dynamics --- numerical analysis --- fluid mechanics --- blade design --- propeller --- hydraulic machinery runner --- wet modal analysis --- acoustic-structure coupling --- boundary condition --- marine growth --- hydrodynamic loading --- roughness --- mussels --- morison coefficients --- cavity detachment --- free streamlines --- Brillouin criterion
Choose an application
Semiconductor lasers are key components in many optical systems due to their advantages, including their small size, low cost, high efficiency, and low power consumption. It is well-known that semiconductor lasers under external perturbations, such as optical injection, optical feedback, or delayed coupling can exhibit a large variety of complex dynamical behaviors. Nowadays, cutting-edge engineering applications based on the complex dynamics of diode lasers are being conducted in areas, such as optical communications, optical signal processing, encoded communications, neuro-inspired ultra-fast optical computing devices, microwave signal generation, RADAR and LIDAR applications, biomedical imaging, and broadband spectroscopy. The prospects for these applications are even more exciting with the advent of photonic integrated circuits. This Special Issue focuses on theoretical and experimental advances in the nonlinear dynamics of semiconductor lasers subject to different types of external perturbations.
Research & information: general --- Physics --- Optical physics --- spin-VCSELs --- laser arrays --- laser dynamics --- spin flip model --- coupled lasers --- optoelectronics --- OLED --- laser --- organic laser diode --- nonlinear dynamics --- quantum dot lasers --- optical feedback --- chaotic --- linewidth enhancement factor (LEF) --- interband cascade laser --- mid-infrared chaos --- semiconductor laser --- optical phase --- gain-switching --- spontaneous emission noise --- quantum random number generation --- semiconductor lasers --- mutual coupling --- asymmetric coupling strength --- symmetry breaking --- narrow-linewidth lasers --- laser stability --- long delay --- injection-locking --- noise --- simulation --- pulsation --- chaos --- optical injection --- excitability --- neuromorphic dynamics --- modulation --- locking --- low-frequency fluctuations --- optical frequency comb --- polarization switching --- VCSEL
Choose an application
Semiconductor lasers are key components in many optical systems due to their advantages, including their small size, low cost, high efficiency, and low power consumption. It is well-known that semiconductor lasers under external perturbations, such as optical injection, optical feedback, or delayed coupling can exhibit a large variety of complex dynamical behaviors. Nowadays, cutting-edge engineering applications based on the complex dynamics of diode lasers are being conducted in areas, such as optical communications, optical signal processing, encoded communications, neuro-inspired ultra-fast optical computing devices, microwave signal generation, RADAR and LIDAR applications, biomedical imaging, and broadband spectroscopy. The prospects for these applications are even more exciting with the advent of photonic integrated circuits. This Special Issue focuses on theoretical and experimental advances in the nonlinear dynamics of semiconductor lasers subject to different types of external perturbations.
spin-VCSELs --- laser arrays --- laser dynamics --- spin flip model --- coupled lasers --- optoelectronics --- OLED --- laser --- organic laser diode --- nonlinear dynamics --- quantum dot lasers --- optical feedback --- chaotic --- linewidth enhancement factor (LEF) --- interband cascade laser --- mid-infrared chaos --- semiconductor laser --- optical phase --- gain-switching --- spontaneous emission noise --- quantum random number generation --- semiconductor lasers --- mutual coupling --- asymmetric coupling strength --- symmetry breaking --- narrow-linewidth lasers --- laser stability --- long delay --- injection-locking --- noise --- simulation --- pulsation --- chaos --- optical injection --- excitability --- neuromorphic dynamics --- modulation --- locking --- low-frequency fluctuations --- optical frequency comb --- polarization switching --- VCSEL
Listing 1 - 10 of 102 | << page >> |
Sort by
|