Listing 1 - 3 of 3 |
Sort by
|
Choose an application
The Special Issue contains theoretical and experimental works that report on studies of impurities in quantum gases, fundamental properties and universal aspects of quasiparticles and other related many-body phenomena. Particular focus is placed on the Fermi and Bose polarons. The Special Issue contains ten research articles and two reviews. M. G. Skou et al. report on the experimental observation of time dynamics of Bose polarons. Theoretical studies by H. Tajima et al., L. A. Ardila, and G. Panochko and V. Pastukhov touch upon the physics of multiple impurities, in particular, the induced impurity–impurity interactions in different spatial dimensions and the formation of multi-polaron states. G. M. Koutentakis et al. elaborate on the phenomenon of temporal orthogonality catastrophe in low dimensions. Polaritons in an electron gas are discussed by M. A. Bastarrachea-Magnani et al. M. Brooks et al. describe the emergence of anyons originating from angulons. F. Scazza et al. provide an overview of our current understanding of repulsive Bose and Fermi polarons. C. D’Errico and M. G. Tarallo explicate the effects of disorder in bosonic systems. The Special Issue also includes studies of correlated atom pairs in bosonic mixtures by O. Alon, the behavior of the three-body decay rate coefficients into shallow dimers in mass-imbalanced three-atom systems by P. Giannakeas and C. H. Greene, population and angular momentum transfer in Raman-coupled Bose–Einstein condensates by K. Mukherjee et al.
Research & information: general --- Physics --- Bose–Einstein condensate --- Laguerre–Gaussian --- Raman transition --- cold atoms --- light–matter interaction --- particle transfer --- density pattern --- polaron --- impurity --- spectroscopy of quasiparticles --- interpolaron correlations --- quantum depletion --- ultracold atoms --- Fermi degenerate gases --- Bose–Einstein condensates --- impurity dynamics --- ramsey interferometry --- polarons --- polariton --- Fermi polaron --- Landau theory --- quasiparticle interactions --- mixtures --- identical-boson pairs --- distinguishable-boson pairs --- natural geminals --- natural orbitals --- reduced density matrices --- intra-species reduced density matrices --- inter-species reduced density matrices --- fragmentation --- condensation --- infinite-particle-number limit --- harmonic-interaction models --- pair fragmentation --- Schmidt decomposition --- center-of-mass --- relative center-of-mass --- anyons --- quasiparticles --- Quantum Hall Effect --- topological states of matter --- few-body collisions --- Efimov effect --- mass-imbalanced systems --- recombination --- cold gases in optical lattices --- quantum phase transitions --- disordered systems --- Bose polaron --- pattern formation --- temporal orthogonality catastrophe --- Lee-Low-Pines transformation --- mobile and immobile impurities --- Bose polaron and bipolaron --- effective field theory approach --- induced interaction --- polaron–polaron interaction --- gas of impurities --- quantum–Monte Carlo --- Fermi polarons --- Bose polarons --- repulsive interactions --- metastable quasiparticles --- quasiparticle lifetime --- mediated interactions --- repulsive Fermi gas --- ultracold atomic mixtures
Choose an application
Everybody knows that mathematics is indispensable to physics--imagine where we'd be today if Einstein and Newton didn't have the math to back up their ideas. But how many people realize that physics can be used to produce many astonishing and strikingly elegant solutions in mathematics? Mark Levi shows how in this delightful book, treating readers to a host of entertaining problems and mind-bending puzzlers that will amuse and inspire their inner physicist.Levi turns math and physics upside down, revealing how physics can simplify proofs and lead to quicker solutions and new theorems, and how physical solutions can illustrate why results are true in ways lengthy mathematical calculations never can. Did you know it's possible to derive the Pythagorean theorem by spinning a fish tank filled with water? Or that soap film holds the key to determining the cheapest container for a given volume? Or that the line of best fit for a data set can be found using a mechanical contraption made from a rod and springs? Levi demonstrates how to use physical intuition to solve these and other fascinating math problems. More than half the problems can be tackled by anyone with precalculus and basic geometry, while the more challenging problems require some calculus. This one-of-a-kind book explains physics and math concepts where needed, and includes an informative appendix of physical principles.The Mathematical Mechanic will appeal to anyone interested in the little-known connections between mathematics and physics and how both endeavors relate to the world around us.
Mathematical physics. --- Problem solving. --- MATHEMATICS / General. --- Methodology --- Psychology --- Decision making --- Executive functions (Neuropsychology) --- Physical mathematics --- Physics --- Mathematics --- Addition. --- Analytic function. --- Angular acceleration. --- Angular velocity. --- Axle. --- Calculation. --- Capacitor. --- Cartesian coordinate system. --- Cauchy's integral formula. --- Center of mass (relativistic). --- Center of mass. --- Centroid. --- Ceva's theorem. --- Clockwise. --- Complex analysis. --- Complex number. --- Conservation of energy. --- Convex curve. --- Curvature. --- Curve. --- Cylinder (geometry). --- Derivative. --- Diameter. --- Differential geometry. --- Dimension. --- Division by zero. --- Dot product. --- Eigenvalues and eigenvectors. --- Electric current. --- Equation. --- Euler's formula. --- Euler–Lagrange equation. --- Fermat's principle. --- Friction. --- Fundamental theorem of calculus. --- Gaussian curvature. --- Generating function. --- Geodesic curvature. --- Geometry. --- Gravity. --- Green's theorem. --- Heat flux. --- Hinge. --- Hooke's law. --- Horizontal plane. --- Hypotenuse. --- Inductance. --- Instant. --- Kinetic energy. --- Line integral. --- Linear map. --- Mathematics. --- Mechanics. --- Moment of inertia. --- Newton's laws of motion. --- Normal (geometry). --- Ohm's law. --- Optics. --- Partial derivative. --- Potential energy. --- Proportionality (mathematics). --- Pythagorean theorem. --- Quadratic function. --- Quantity. --- Rectangle. --- Resistor. --- Right angle. --- Right triangle. --- Second law of thermodynamics. --- Semicircle. --- Series and parallel circuits. --- Sign (mathematics). --- Slinky. --- Snell's law. --- Soap bubble. --- Soap film. --- Special case. --- Spring (device). --- Stiffness. --- Summation. --- Surface area. --- Surface tension. --- Tangent space. --- Tangent. --- Telescope. --- Theorem. --- Thought experiment. --- Tractrix. --- Trapezoid. --- Trigonometric functions. --- Two-dimensional gas. --- Uncertainty principle. --- Unit circle. --- Unit vector. --- Vacuum. --- Variable (mathematics). --- Vector field. --- Voltage drop. --- Voltage. --- Wavefront.
Choose an application
New adaptive and event-triggered control designs with concrete applications in undersea construction, offshore drilling, and cable elevatorsControl applications in undersea construction, cable elevators, and offshore drilling present major methodological challenges because they involve PDE systems (cables and drillstrings) of time-varying length, coupled with ODE systems (the attached loads or tools) that usually have unknown parameters and unmeasured states. In PDE Control of String-Actuated Motion, Ji Wang and Miroslav Krstic develop control algorithms for these complex PDE-ODE systems evolving on time-varying domains.Motivated by physical systems, the book’s algorithms are designed to operate, with rigorous mathematical guarantees, in the presence of real-world challenges, such as unknown parameters, unmeasured distributed states, environmental disturbances, delays, and event-triggered implementations. The book leverages the power of the PDE backstepping approach and expands its scope in many directions.Filled with theoretical innovations and comprehensive in its coverage, PDE Control of String-Actuated Motion provides new design tools and mathematical techniques with far-reaching potential in adaptive control, delay systems, and event-triggered control.
Boundary value problems. --- Cables --- Control theory. --- Differential equations, Partial. --- Equations of motion. --- Loads (Mechanics) --- Loads (Mechanics). --- SCIENCE / Mechanics / Dynamics. --- Vibration. --- Strains and stresses --- Boundary conditions (Differential equations) --- Differential equations --- Functions of complex variables --- Mathematical physics --- Initial value problems --- Motion equations --- Mechanics --- Lagrange equations --- Partial differential equations --- Dynamics --- Machine theory --- Accelerometer. --- Actuator. --- Adaptive control. --- Aircraft. --- Algorithm. --- Altitude. --- Ammeter. --- Amplitude. --- Angle of attack. --- Attitude control. --- Belt (mechanical). --- Bending. --- Buoyancy. --- Cape Crozier. --- Center of mass (relativistic). --- Center of pressure (fluid mechanics). --- Centrality. --- Centrifugal force. --- Chemical bond. --- Coanda effect. --- Combination. --- Compressibility. --- Contact force. --- Contour line. --- Control limits. --- Control reversal. --- Control variable. --- Convection. --- Coordinate system. --- Coupling. --- Drill bit. --- Dynamic pressure. --- Eigenfunction. --- Elastic instability. --- Elevon. --- Empennage. --- Equation. --- Flapper valve. --- Flight control surfaces. --- Force. --- Frequency domain. --- Frequency response. --- Fuselage. --- Gangway (nautical). --- Hamilton's principle. --- Imagery. --- Increment and decrement operators. --- Inference. --- Initial condition. --- Inspection. --- Laminar flow. --- Limit load (physics). --- Limit set. --- Linearization. --- Longitudinal mode. --- Loop around. --- Mach number. --- Main effect. --- Motion control. --- Motion planning. --- Newton's laws of motion. --- Open loop. --- Order of magnitude. --- Partial differential equation. --- Pitch angle (particle motion). --- Powered lift. --- Pressure. --- Propulsion. --- Publishing. --- Requirement. --- Rotation around a fixed axis. --- Shackle. --- Shear flow. --- Simultaneity. --- Skin friction drag. --- Solver. --- Specific impulse. --- Spiral model. --- Spline interpolation. --- State-space representation. --- Subroutine. --- Thrust vectoring. --- Torsion (mechanics). --- Torsional vibration. --- Trajectory. --- Transfer function. --- Transformation matrix. --- Transonic. --- Unit vector. --- Upper and lower bounds. --- Vector field. --- Vector projection. --- Vertical stabilizer. --- Vestibular system. --- Vibration control. --- Wind tunnel. --- Wire rope. --- SCIENCE / Mechanics / Dynamics --- MATHEMATICS / Applied
Listing 1 - 3 of 3 |
Sort by
|