Listing 1 - 8 of 8 |
Sort by
|
Choose an application
Thermoelectricity is a well-known phenomenon that enables the conversion of heat into electric energy without moving parts. Its exploitation has been widely considered to contribute to the increasing need for energy along with the concerns about the environmental impact of traditional fossil energy sources. In the last few years, significant improvements in the performance of thermoelectric materials have been achieved through chemical doping, solid solution formation, and nanoengineering approaches. Furthermore, the feasibility of flexible, stretchable, and conformable thermoelectric harvesters has been demonstrated and has attracted the interest of an audience from many different fields. However, the path for practical applications of thermoelectrics is still a long one. This Special Issue of Materials intends to bridge the gap between materials science and applications of thermoelectric materials. Many topics are welcome: new thermoelectric compounds; the correlation between material structure and thermoelectric properties; bulk thermoelectric ceramics, oxides, and chalcogenides; bulk thermoelectric alloys and intermetallics; organic and polymeric thermoelectrics; thermoelectric thin films, multilayers, and nanocomposites; theory and modeling; thermal transport and thermal conductivity; applications and devices based on thermoelectric materials; standardization and metrology; and more.
Technology: general issues --- History of engineering & technology --- Materials science --- thermoelectricity --- skutterudites --- crystal structure --- powder x-ray diffraction --- thermal conductivity --- calcium cobaltite --- TE performance --- electrical properties --- composite --- redox tuning --- thermoelectric materials --- joining --- skutterudite alloy --- Co-Mo metallization layer --- Seebeck coefficient --- thin film --- oxides --- copper tin sulfide --- Cu2SnS3 --- CTS --- thermal stability --- chalcogenide --- material production --- porosity --- porous thermoelectric materials --- n/a
Choose an application
Thermoelectricity is a well-known phenomenon that enables the conversion of heat into electric energy without moving parts. Its exploitation has been widely considered to contribute to the increasing need for energy along with the concerns about the environmental impact of traditional fossil energy sources. In the last few years, significant improvements in the performance of thermoelectric materials have been achieved through chemical doping, solid solution formation, and nanoengineering approaches. Furthermore, the feasibility of flexible, stretchable, and conformable thermoelectric harvesters has been demonstrated and has attracted the interest of an audience from many different fields. However, the path for practical applications of thermoelectrics is still a long one. This Special Issue of Materials intends to bridge the gap between materials science and applications of thermoelectric materials. Many topics are welcome: new thermoelectric compounds; the correlation between material structure and thermoelectric properties; bulk thermoelectric ceramics, oxides, and chalcogenides; bulk thermoelectric alloys and intermetallics; organic and polymeric thermoelectrics; thermoelectric thin films, multilayers, and nanocomposites; theory and modeling; thermal transport and thermal conductivity; applications and devices based on thermoelectric materials; standardization and metrology; and more.
thermoelectricity --- skutterudites --- crystal structure --- powder x-ray diffraction --- thermal conductivity --- calcium cobaltite --- TE performance --- electrical properties --- composite --- redox tuning --- thermoelectric materials --- joining --- skutterudite alloy --- Co-Mo metallization layer --- Seebeck coefficient --- thin film --- oxides --- copper tin sulfide --- Cu2SnS3 --- CTS --- thermal stability --- chalcogenide --- material production --- porosity --- porous thermoelectric materials --- n/a
Choose an application
Thermoelectricity is a well-known phenomenon that enables the conversion of heat into electric energy without moving parts. Its exploitation has been widely considered to contribute to the increasing need for energy along with the concerns about the environmental impact of traditional fossil energy sources. In the last few years, significant improvements in the performance of thermoelectric materials have been achieved through chemical doping, solid solution formation, and nanoengineering approaches. Furthermore, the feasibility of flexible, stretchable, and conformable thermoelectric harvesters has been demonstrated and has attracted the interest of an audience from many different fields. However, the path for practical applications of thermoelectrics is still a long one. This Special Issue of Materials intends to bridge the gap between materials science and applications of thermoelectric materials. Many topics are welcome: new thermoelectric compounds; the correlation between material structure and thermoelectric properties; bulk thermoelectric ceramics, oxides, and chalcogenides; bulk thermoelectric alloys and intermetallics; organic and polymeric thermoelectrics; thermoelectric thin films, multilayers, and nanocomposites; theory and modeling; thermal transport and thermal conductivity; applications and devices based on thermoelectric materials; standardization and metrology; and more.
Technology: general issues --- History of engineering & technology --- Materials science --- thermoelectricity --- skutterudites --- crystal structure --- powder x-ray diffraction --- thermal conductivity --- calcium cobaltite --- TE performance --- electrical properties --- composite --- redox tuning --- thermoelectric materials --- joining --- skutterudite alloy --- Co-Mo metallization layer --- Seebeck coefficient --- thin film --- oxides --- copper tin sulfide --- Cu2SnS3 --- CTS --- thermal stability --- chalcogenide --- material production --- porosity --- porous thermoelectric materials
Choose an application
We would like to provide the scientists a set of studies entitled "Study of the Influence of Abiotic and Biotic Stress Factors on Horticultural Plants". The reprint book contains 12 papers about the influence of the stress factors on the plant growth and soil parameters. Authors descripted the impact of the biotic and abiotic stress factors (i.e., high, and low temperature, salt, inorganic pollutants such as salts, heavy metals, phosphite, as well as irrigation) on the physiological, biochemical, and anatomical changes occurring in the plants at the cellular, tissue, organ, and whole plant level. The subject of these studies were different plant species, i.e., watermelon, lettuce, kale, potato, grapevine, hops, orchid, strawberry, and boxwood. The ideas of the papers can be divided into five topics: (1) achieving better quality of plant material for food production by changes made in the growth conditions, metabolic and genetic modifications; (2) increasing the plant resistance to environmental stresses by application of exogenous compounds of different chemical character; (3) reducing plant stress caused by anthropogenic activity applying nonmodified and genetically modified plants; (4) mitigating drought stress by irrigation; and 5) the positive effect of plant growth-promoting microorganisms on horticulture plants performance during drought stress.
abiotic stress --- strawberry --- companion plants --- phytoremediation --- cold stress --- cold-responsive genes --- anti-oxidants --- proline --- malondialdehyde --- hormone profiling --- 5-aminolevulinic acid --- Buxus megistophylla --- chlorophyll fast fluorescence characteristics --- mineral nutrition --- urban road greening --- orchid --- transformed ecosystems --- fly ash --- metals --- adaptive responses --- water exchange --- leaf mesostructure --- photosynthetic pigments --- photosynthesis --- plant introduction --- grapevine --- maximum daily shrinkage --- daily increase --- stem water potential --- leaf relative water content --- signal intensity --- Humulus lupulus L. --- soil porosity --- soil bulk density --- liming --- hop ridges --- Vitis spp. --- piwi cultivars --- disease-resistant varieties --- malic acid --- ripening --- fruit composition --- downy mildew --- phosphite stress --- antioxidant enzyme --- hydrogen peroxide --- root morphology --- potato --- genotypes --- Brassica oleracea var. acephala --- short-term cold stress --- phytochemicals --- pigments --- antioxidant enzymes --- chitosan (CTS) --- lettuce --- salinity --- soluble sugars --- climate change --- drought stress --- biopreparations --- plant stimulation --- plant growth-promoting microorganisms --- watermelon --- rootstock --- gene expression --- n/a
Choose an application
We would like to provide the scientists a set of studies entitled "Study of the Influence of Abiotic and Biotic Stress Factors on Horticultural Plants". The reprint book contains 12 papers about the influence of the stress factors on the plant growth and soil parameters. Authors descripted the impact of the biotic and abiotic stress factors (i.e., high, and low temperature, salt, inorganic pollutants such as salts, heavy metals, phosphite, as well as irrigation) on the physiological, biochemical, and anatomical changes occurring in the plants at the cellular, tissue, organ, and whole plant level. The subject of these studies were different plant species, i.e., watermelon, lettuce, kale, potato, grapevine, hops, orchid, strawberry, and boxwood. The ideas of the papers can be divided into five topics: (1) achieving better quality of plant material for food production by changes made in the growth conditions, metabolic and genetic modifications; (2) increasing the plant resistance to environmental stresses by application of exogenous compounds of different chemical character; (3) reducing plant stress caused by anthropogenic activity applying nonmodified and genetically modified plants; (4) mitigating drought stress by irrigation; and 5) the positive effect of plant growth-promoting microorganisms on horticulture plants performance during drought stress.
Research & information: general --- Biology, life sciences --- abiotic stress --- strawberry --- companion plants --- phytoremediation --- cold stress --- cold-responsive genes --- anti-oxidants --- proline --- malondialdehyde --- hormone profiling --- 5-aminolevulinic acid --- Buxus megistophylla --- chlorophyll fast fluorescence characteristics --- mineral nutrition --- urban road greening --- orchid --- transformed ecosystems --- fly ash --- metals --- adaptive responses --- water exchange --- leaf mesostructure --- photosynthetic pigments --- photosynthesis --- plant introduction --- grapevine --- maximum daily shrinkage --- daily increase --- stem water potential --- leaf relative water content --- signal intensity --- Humulus lupulus L. --- soil porosity --- soil bulk density --- liming --- hop ridges --- Vitis spp. --- piwi cultivars --- disease-resistant varieties --- malic acid --- ripening --- fruit composition --- downy mildew --- phosphite stress --- antioxidant enzyme --- hydrogen peroxide --- root morphology --- potato --- genotypes --- Brassica oleracea var. acephala --- short-term cold stress --- phytochemicals --- pigments --- antioxidant enzymes --- chitosan (CTS) --- lettuce --- salinity --- soluble sugars --- climate change --- drought stress --- biopreparations --- plant stimulation --- plant growth-promoting microorganisms --- watermelon --- rootstock --- gene expression
Choose an application
At present, cyanobacteria and their toxins (also known as cyanotoxins) constitute a major threat for freshwater resources worldwide. Cyanotoxin occurrence in water bodies around the globe is constantly increasing, whereas emerging, less studied or completely new variants and congeners of various chemical classes of cyanotoxins, as well as their degradation/transformation products are often detected. In addition to planctic cyanobacteria, benthic cyanobacteria, in many cases, appear to be important toxin producers, although far less studied and more difficult to manage and control. This Special Issue highlights novel research results on the structural diversity of cyanotoxins from planktic and benthic cyanobacteria, as well as on their expanding global geographical spread in freshwaters.
Research & information: general --- Environmental economics --- Meiktila Lake --- Raphidiopsis --- Microcystis --- cylindrospermopsin --- deoxycylindrospermopsin --- microcystin --- cyanobacteria --- cyanopeptides --- harmful bloom --- liquid chromatography-tandem mass spectrometry --- global natural product social networking (GNPS) --- dereplication strategy --- earthquakes --- harmful algal blooms --- sediment --- sediment cores --- co-occurrence --- toxicity --- plastics --- metals --- biocide --- anatoxin-a --- dihydroanatoxin-a --- Tychonema --- neurotoxicosis --- cyanotoxins --- macrophytes --- benthic --- tychoplanktic --- reservoir --- Maumee Bay --- Sandusky Bay --- Planktothrix --- anatoxin --- cyanotoxin detection --- harmful cyanobacterial blooms --- next-generation biomonitoring --- real-time PCR --- qPCR --- LC-MS/MS --- saxitoxin --- ESI-LC-MS/MS --- 16S rRNA phylogeny --- Azores --- eutrophication --- long term monitoring --- water quality --- microcystins --- anabaenopeptins --- microginins --- aeruginosins --- aeruginosamide --- SPE --- Lake Vegoritis --- deep-chlorophyll layers (DCLs) --- cyanobacterial toxins --- allelopathy --- bioactive metabolites --- hypoxia --- Georgian Bay --- peptide --- NRPS --- anabaenopeptin --- Synechococcus --- temperate lakes --- cyanotoxins (CTs) --- microcystins (MCs) --- volatile organic compounds (VOCs) --- taste and odor (T&O) compounds --- SPE-LC-MS/MS --- HS-SPME-GC/MS --- LC–qTRAP MS/MS --- fragmentation spectra --- structure elucidation --- cyanobacterial metabolites --- Greek freshwaters --- planktonic cyanobacteria --- blooms --- monitoring --- analysis --- mass spectrometry --- Liquid Chromatography with tandem mass spectrometry (LC-MS/MS) --- fish tissue --- shellfish --- detection methods --- n/a --- LC-qTRAP MS/MS
Choose an application
At present, cyanobacteria and their toxins (also known as cyanotoxins) constitute a major threat for freshwater resources worldwide. Cyanotoxin occurrence in water bodies around the globe is constantly increasing, whereas emerging, less studied or completely new variants and congeners of various chemical classes of cyanotoxins, as well as their degradation/transformation products are often detected. In addition to planctic cyanobacteria, benthic cyanobacteria, in many cases, appear to be important toxin producers, although far less studied and more difficult to manage and control. This Special Issue highlights novel research results on the structural diversity of cyanotoxins from planktic and benthic cyanobacteria, as well as on their expanding global geographical spread in freshwaters.
Meiktila Lake --- Raphidiopsis --- Microcystis --- cylindrospermopsin --- deoxycylindrospermopsin --- microcystin --- cyanobacteria --- cyanopeptides --- harmful bloom --- liquid chromatography-tandem mass spectrometry --- global natural product social networking (GNPS) --- dereplication strategy --- earthquakes --- harmful algal blooms --- sediment --- sediment cores --- co-occurrence --- toxicity --- plastics --- metals --- biocide --- anatoxin-a --- dihydroanatoxin-a --- Tychonema --- neurotoxicosis --- cyanotoxins --- macrophytes --- benthic --- tychoplanktic --- reservoir --- Maumee Bay --- Sandusky Bay --- Planktothrix --- anatoxin --- cyanotoxin detection --- harmful cyanobacterial blooms --- next-generation biomonitoring --- real-time PCR --- qPCR --- LC-MS/MS --- saxitoxin --- ESI-LC-MS/MS --- 16S rRNA phylogeny --- Azores --- eutrophication --- long term monitoring --- water quality --- microcystins --- anabaenopeptins --- microginins --- aeruginosins --- aeruginosamide --- SPE --- Lake Vegoritis --- deep-chlorophyll layers (DCLs) --- cyanobacterial toxins --- allelopathy --- bioactive metabolites --- hypoxia --- Georgian Bay --- peptide --- NRPS --- anabaenopeptin --- Synechococcus --- temperate lakes --- cyanotoxins (CTs) --- microcystins (MCs) --- volatile organic compounds (VOCs) --- taste and odor (T&O) compounds --- SPE-LC-MS/MS --- HS-SPME-GC/MS --- LC–qTRAP MS/MS --- fragmentation spectra --- structure elucidation --- cyanobacterial metabolites --- Greek freshwaters --- planktonic cyanobacteria --- blooms --- monitoring --- analysis --- mass spectrometry --- Liquid Chromatography with tandem mass spectrometry (LC-MS/MS) --- fish tissue --- shellfish --- detection methods --- n/a --- LC-qTRAP MS/MS
Choose an application
At present, cyanobacteria and their toxins (also known as cyanotoxins) constitute a major threat for freshwater resources worldwide. Cyanotoxin occurrence in water bodies around the globe is constantly increasing, whereas emerging, less studied or completely new variants and congeners of various chemical classes of cyanotoxins, as well as their degradation/transformation products are often detected. In addition to planctic cyanobacteria, benthic cyanobacteria, in many cases, appear to be important toxin producers, although far less studied and more difficult to manage and control. This Special Issue highlights novel research results on the structural diversity of cyanotoxins from planktic and benthic cyanobacteria, as well as on their expanding global geographical spread in freshwaters.
Research & information: general --- Environmental economics --- Meiktila Lake --- Raphidiopsis --- Microcystis --- cylindrospermopsin --- deoxycylindrospermopsin --- microcystin --- cyanobacteria --- cyanopeptides --- harmful bloom --- liquid chromatography-tandem mass spectrometry --- global natural product social networking (GNPS) --- dereplication strategy --- earthquakes --- harmful algal blooms --- sediment --- sediment cores --- co-occurrence --- toxicity --- plastics --- metals --- biocide --- anatoxin-a --- dihydroanatoxin-a --- Tychonema --- neurotoxicosis --- cyanotoxins --- macrophytes --- benthic --- tychoplanktic --- reservoir --- Maumee Bay --- Sandusky Bay --- Planktothrix --- anatoxin --- cyanotoxin detection --- harmful cyanobacterial blooms --- next-generation biomonitoring --- real-time PCR --- qPCR --- LC-MS/MS --- saxitoxin --- ESI-LC-MS/MS --- 16S rRNA phylogeny --- Azores --- eutrophication --- long term monitoring --- water quality --- microcystins --- anabaenopeptins --- microginins --- aeruginosins --- aeruginosamide --- SPE --- Lake Vegoritis --- deep-chlorophyll layers (DCLs) --- cyanobacterial toxins --- allelopathy --- bioactive metabolites --- hypoxia --- Georgian Bay --- peptide --- NRPS --- anabaenopeptin --- Synechococcus --- temperate lakes --- cyanotoxins (CTs) --- microcystins (MCs) --- volatile organic compounds (VOCs) --- taste and odor (T&O) compounds --- SPE-LC-MS/MS --- HS-SPME-GC/MS --- LC-qTRAP MS/MS --- fragmentation spectra --- structure elucidation --- cyanobacterial metabolites --- Greek freshwaters --- planktonic cyanobacteria --- blooms --- monitoring --- analysis --- mass spectrometry --- Liquid Chromatography with tandem mass spectrometry (LC-MS/MS) --- fish tissue --- shellfish --- detection methods
Listing 1 - 8 of 8 |
Sort by
|