Listing 1 - 10 of 11 | << page >> |
Sort by
|
Choose an application
Efecte Jahn-Teller --- Bosons --- Fermions --- Partícules de Fermi-Dirac --- Estadística quàntica --- Física de partícules --- Barions --- Leptons (Física nuclear) --- Partícules Bose-Einstein --- Bosons de Higgs --- Condensació de Bose-Einstein --- Jahn-Teller, Efecte --- Nivells d'energia (Mecànica quàntica) --- Interacting boson-fermion models. --- Jahn-Teller effect. --- Teller-Jahn effect --- Coupled mode theory --- Crystal field theory --- Energy levels (Quantum mechanics) --- Boson-fermion models, Interacting --- Boson-fermion systems, Interacting --- Fermion-boson models, Interacting --- Fermion-boson systems, Interacting --- IBFM (Nuclear physics) --- Interacting boson-fermion systems --- Nuclear collective models
Choose an application
Choose an application
Fermions. --- Leptons (Nuclear physics) --- Particles (Nuclear physics) --- Fermions --- Fermi-Dirac particles --- Quantum statistics --- Interacting boson-fermion models
Choose an application
Special Issue in honour of Prof. Yves Brihaye, on the occasion of his 65th birthday. The issue is mainly dedicated to the study of compact objects and solutions to Einstein-Yang-Mills equations and extensions thereof, topics to which Prof. Y. Brihaye contributed very significantly.
Research & information: general --- Physics --- deconfinement --- Matter-gravity coupling --- Yang–Mills theory --- Q-ball --- boson star --- coadjoint orbits --- conformal group --- Poincaré group --- solitons --- boson stars --- Dirac stars --- Spontaneous Symmetry Breaking --- BEH field mass spectrum --- LHC experiments --- black holes --- scalar fields --- Einstein–Maxwell–scalar theory --- gravity models --- Chern–Simons gravity --- exact solutions --- wormholes --- NUT charge --- higher curvature theories
Choose an application
Special Issue in honour of Prof. Yves Brihaye, on the occasion of his 65th birthday. The issue is mainly dedicated to the study of compact objects and solutions to Einstein-Yang-Mills equations and extensions thereof, topics to which Prof. Y. Brihaye contributed very significantly.
deconfinement --- Matter-gravity coupling --- Yang–Mills theory --- Q-ball --- boson star --- coadjoint orbits --- conformal group --- Poincaré group --- solitons --- boson stars --- Dirac stars --- Spontaneous Symmetry Breaking --- BEH field mass spectrum --- LHC experiments --- black holes --- scalar fields --- Einstein–Maxwell–scalar theory --- gravity models --- Chern–Simons gravity --- exact solutions --- wormholes --- NUT charge --- higher curvature theories
Choose an application
Special Issue in honour of Prof. Yves Brihaye, on the occasion of his 65th birthday. The issue is mainly dedicated to the study of compact objects and solutions to Einstein-Yang-Mills equations and extensions thereof, topics to which Prof. Y. Brihaye contributed very significantly.
Research & information: general --- Physics --- deconfinement --- Matter-gravity coupling --- Yang–Mills theory --- Q-ball --- boson star --- coadjoint orbits --- conformal group --- Poincaré group --- solitons --- boson stars --- Dirac stars --- Spontaneous Symmetry Breaking --- BEH field mass spectrum --- LHC experiments --- black holes --- scalar fields --- Einstein–Maxwell–scalar theory --- gravity models --- Chern–Simons gravity --- exact solutions --- wormholes --- NUT charge --- higher curvature theories
Choose an application
This book provides a comprehensive discussion of the Jahn-Teller Effect (JTE), focusing on the boson-fermion interaction. While current research is concerned with measuring and calculating ever more sophisticated and complex manifestations of the JT effect, the present volume takes away the epicycles of the theory and focuses on the symmetry dilemma at its core. When fermions and bosons meet, they get entangled and form a new dynamic reality. According to the rules of Molecular Symmetry, this reality is limited to a small set of patterns, with degeneracy cardinalities: 2, 3, 4, 5, and 6. The novelty of the book is that it adopts a unique mathematical technique, known as the Bargmann-Fock representation, and treats all degeneracies in detail. So far, this method was only applied to the simplest doublet case therefore its extension to the entire range of cases offers a new unified perspective. This volume will help the reader acquire a clear understanding of the JT effect, discover its universal mechanism and it will be a great tool for researchers and graduates working on this topic.
Ordered algebraic structures --- Topological groups. Lie groups --- Quantum mechanics. Quantumfield theory --- Physicochemistry --- Chemical structure --- Qualitative chemical analysis --- Quantitative chemical analysis --- Molecular biology --- spectra (chemie) --- moleculaire structuur --- chemometrie --- quantumfysica --- wiskunde --- topologie --- fysicochemie --- atoomstructuur --- Interacting boson-fermion models. --- Jahn-Teller effect. --- Efecte Jahn-Teller --- Bosons --- Fermions
Choose an application
The Special Issue contains theoretical and experimental works that report on studies of impurities in quantum gases, fundamental properties and universal aspects of quasiparticles and other related many-body phenomena. Particular focus is placed on the Fermi and Bose polarons. The Special Issue contains ten research articles and two reviews. M. G. Skou et al. report on the experimental observation of time dynamics of Bose polarons. Theoretical studies by H. Tajima et al., L. A. Ardila, and G. Panochko and V. Pastukhov touch upon the physics of multiple impurities, in particular, the induced impurity–impurity interactions in different spatial dimensions and the formation of multi-polaron states. G. M. Koutentakis et al. elaborate on the phenomenon of temporal orthogonality catastrophe in low dimensions. Polaritons in an electron gas are discussed by M. A. Bastarrachea-Magnani et al. M. Brooks et al. describe the emergence of anyons originating from angulons. F. Scazza et al. provide an overview of our current understanding of repulsive Bose and Fermi polarons. C. D’Errico and M. G. Tarallo explicate the effects of disorder in bosonic systems. The Special Issue also includes studies of correlated atom pairs in bosonic mixtures by O. Alon, the behavior of the three-body decay rate coefficients into shallow dimers in mass-imbalanced three-atom systems by P. Giannakeas and C. H. Greene, population and angular momentum transfer in Raman-coupled Bose–Einstein condensates by K. Mukherjee et al.
Research & information: general --- Physics --- Bose–Einstein condensate --- Laguerre–Gaussian --- Raman transition --- cold atoms --- light–matter interaction --- particle transfer --- density pattern --- polaron --- impurity --- spectroscopy of quasiparticles --- interpolaron correlations --- quantum depletion --- ultracold atoms --- Fermi degenerate gases --- Bose–Einstein condensates --- impurity dynamics --- ramsey interferometry --- polarons --- polariton --- Fermi polaron --- Landau theory --- quasiparticle interactions --- mixtures --- identical-boson pairs --- distinguishable-boson pairs --- natural geminals --- natural orbitals --- reduced density matrices --- intra-species reduced density matrices --- inter-species reduced density matrices --- fragmentation --- condensation --- infinite-particle-number limit --- harmonic-interaction models --- pair fragmentation --- Schmidt decomposition --- center-of-mass --- relative center-of-mass --- anyons --- quasiparticles --- Quantum Hall Effect --- topological states of matter --- few-body collisions --- Efimov effect --- mass-imbalanced systems --- recombination --- cold gases in optical lattices --- quantum phase transitions --- disordered systems --- Bose polaron --- pattern formation --- temporal orthogonality catastrophe --- Lee-Low-Pines transformation --- mobile and immobile impurities --- Bose polaron and bipolaron --- effective field theory approach --- induced interaction --- polaron–polaron interaction --- gas of impurities --- quantum–Monte Carlo --- Fermi polarons --- Bose polarons --- repulsive interactions --- metastable quasiparticles --- quasiparticle lifetime --- mediated interactions --- repulsive Fermi gas --- ultracold atomic mixtures
Choose an application
This collection of articles focuses on different aspects of the study of organic conductors. Recent progress in both theoretical and experimental studies is covered in this Special Issue. Papers on a wide variety of studies are categorized into representative topics of chemistry and physics. Besides classical studies on the crystalline organic conductors, applied studies on semiconducting thin films and a number of new topics shared with inorganic materials are also discussed.
Technology: general issues --- Chemical engineering --- organic π-radical --- molecular conductor --- phthalocyanine --- three-dimensional network --- three-dimensional electronic system --- organic conductors --- bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) --- bis(ethylenediseleno)tetrathiafulvalene (BEST) --- bis(ethylenedithio)tetraselenafulvalene (BETS) --- electrical resistivity --- magnetic susceptibility --- X-ray analysis --- charge-ordered state --- quantum chemical calculations --- Madelung energy --- magnetic property --- reversible transformation --- spin ladder --- nodal line semimetal --- single-component molecular conductor --- conductivity --- DOS --- tight-binding model --- interacting electrons in one dimension --- electronic and lattice instabilities --- renormalization group method --- X-ray diffraction --- single crystal --- electron density --- molecular orbital --- single-component molecular conductors --- extended-TTF dithiolate ligands --- gold dithiolate complexes --- (BETS)2Fe1−xGaxCl4 --- π-d interaction --- NMR --- charge glass --- heat capacity --- electric current --- electric voltage --- Boson peak --- chirality --- tetrathiafulvalene --- crystal structures --- band structure calculations --- hydrogen bonding --- charge-transfer salts --- (TMTTF)2X --- deuteration --- anions --- charge transport --- tunnel junction --- MOCVD --- quantum well --- co-doping --- solar cells --- (TMTSF)8(I3)5 --- (TMTSF)5(I3)2 --- (TMTSF)4(I3)4·THF --- organic conductor --- crystal structure --- high pressure --- DFT --- MP2 --- organic superconductors --- Beechgard salts --- Maxwell-Garnett approximation --- high-Tc --- pressure effect --- Dirac electron system --- resistivity --- magnetoresistance --- synchrotron X-ray diffraction --- band calculation --- correlated electron materials --- layered organic conductor --- unconventional superconductivity --- vortex dynamics --- d-wave pairing symmetry --- superconducting gap structure --- magnetic field --- flux-flow resistivity --- charge-ordered insulator --- electric double layer transistor --- organic field-effect transistor --- π–d system --- Mott insulator --- strongly correlated electron system --- multiferroic --- dielectric --- photoconductor --- organic semiconductors --- molecular orbitals --- pyroelectricity --- temperature modulation --- molecular ferroelectrics --- radiative temperature control --- thermal diffusion model --- lithium niobate --- first-principles calculation --- density-functional theory --- charge ordering --- hybrid functional --- electronic structure --- nickel–dithiolene complex --- cycloalkane substituent --- crystalline organic charge-transfer complexes --- disordered systems --- overlap integrals --- extended Hückel approximation --- Dirac electrons --- zero-gap semiconductors --- merging of Dirac cones --- n/a --- π-d system --- nickel-dithiolene complex --- extended Hückel approximation
Choose an application
This collection of articles focuses on different aspects of the study of organic conductors. Recent progress in both theoretical and experimental studies is covered in this Special Issue. Papers on a wide variety of studies are categorized into representative topics of chemistry and physics. Besides classical studies on the crystalline organic conductors, applied studies on semiconducting thin films and a number of new topics shared with inorganic materials are also discussed.
organic π-radical --- molecular conductor --- phthalocyanine --- three-dimensional network --- three-dimensional electronic system --- organic conductors --- bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) --- bis(ethylenediseleno)tetrathiafulvalene (BEST) --- bis(ethylenedithio)tetraselenafulvalene (BETS) --- electrical resistivity --- magnetic susceptibility --- X-ray analysis --- charge-ordered state --- quantum chemical calculations --- Madelung energy --- magnetic property --- reversible transformation --- spin ladder --- nodal line semimetal --- single-component molecular conductor --- conductivity --- DOS --- tight-binding model --- interacting electrons in one dimension --- electronic and lattice instabilities --- renormalization group method --- X-ray diffraction --- single crystal --- electron density --- molecular orbital --- single-component molecular conductors --- extended-TTF dithiolate ligands --- gold dithiolate complexes --- (BETS)2Fe1−xGaxCl4 --- π-d interaction --- NMR --- charge glass --- heat capacity --- electric current --- electric voltage --- Boson peak --- chirality --- tetrathiafulvalene --- crystal structures --- band structure calculations --- hydrogen bonding --- charge-transfer salts --- (TMTTF)2X --- deuteration --- anions --- charge transport --- tunnel junction --- MOCVD --- quantum well --- co-doping --- solar cells --- (TMTSF)8(I3)5 --- (TMTSF)5(I3)2 --- (TMTSF)4(I3)4·THF --- organic conductor --- crystal structure --- high pressure --- DFT --- MP2 --- organic superconductors --- Beechgard salts --- Maxwell-Garnett approximation --- high-Tc --- pressure effect --- Dirac electron system --- resistivity --- magnetoresistance --- synchrotron X-ray diffraction --- band calculation --- correlated electron materials --- layered organic conductor --- unconventional superconductivity --- vortex dynamics --- d-wave pairing symmetry --- superconducting gap structure --- magnetic field --- flux-flow resistivity --- charge-ordered insulator --- electric double layer transistor --- organic field-effect transistor --- π–d system --- Mott insulator --- strongly correlated electron system --- multiferroic --- dielectric --- photoconductor --- organic semiconductors --- molecular orbitals --- pyroelectricity --- temperature modulation --- molecular ferroelectrics --- radiative temperature control --- thermal diffusion model --- lithium niobate --- first-principles calculation --- density-functional theory --- charge ordering --- hybrid functional --- electronic structure --- nickel–dithiolene complex --- cycloalkane substituent --- crystalline organic charge-transfer complexes --- disordered systems --- overlap integrals --- extended Hückel approximation --- Dirac electrons --- zero-gap semiconductors --- merging of Dirac cones --- n/a --- π-d system --- nickel-dithiolene complex --- extended Hückel approximation
Listing 1 - 10 of 11 | << page >> |
Sort by
|