Narrow your search

Library

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

ULiège (1)

VIVES (1)

More...

Resource type

book (3)


Language

English (3)


Year
From To Submit

2022 (3)

Listing 1 - 3 of 3
Sort by

Book
Carbapenemase-Producing Enterobacterales
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Carbapenem-resistant Enterobacterales (CRE) are a common cause of infections in both community and healthcare settings and have become an increasing threat to public health worldwide. The focus of this Special Issue includes aspects concerning plasmid-mediated antimicrobial resistance along with other carbapenem resistance mechanisms. Understanding the prevalence and routes of transmission of CRE is important in developing specific interventions for healthcare facilities, as well as the general impact of CRE circulation on the environment. Attention has also been focused on carbapenemase testing in order to provide advanced phenotypic and molecular assays for the identification of CRE, as a valid tool for active global surveillance, and from this perspective, the study of resistance mechanisms can provide significant support for the development of new and appropriate antimicrobial molecules. For all of these reasons, the phenomenon of carbapenem resistance deserves more attention, for the sake of public health.

Keywords

Research & information: general --- Biology, life sciences --- Microbiology (non-medical) --- carbapenem resistance --- carbapenemase --- whole genome sequencing --- long reads, plasmid --- Klebsiella pneumoniae --- extensively drug-resistant --- molecular typing --- carbapenemases --- Enterobacteriales --- human --- animal --- food --- environment --- carbapenemase-producing Enterobacterales --- KPC --- carbapenem --- multidrug resistance --- nosocomial --- Enterobacteriaceae --- ESBL --- resistance genes --- cattle --- blaOXA-48 --- ERIC-PCR --- plasmid profile analysis --- biofilm formation --- PCR-based replicon typing --- antibiotic-resistance --- sequence types --- multilocus sequence typing --- plasmids --- antimicrobial resistance --- carbapenem inactivation method --- carbapenem-resistant Enterobacterales --- real-time multiplex PCR --- whole-genome sequencing --- carbapenem-resistance --- Qatar --- CRE --- OXA-48 --- carbapenems resistance --- Gram-negative bacteria --- infection --- colonization --- COVID-19 --- K. pneumoniae --- porins --- ceftazidime/avibactam --- ESKAPE --- healthcare-associated infections --- antimicrobial peptides --- Temporin L --- Klebsiella michiganensis --- Citrobacter farmeri --- KPC-2 --- plasmid --- transposon --- carbapenem-resistant Enterobacteriaceae (CRE) --- outbreak --- infection control --- pulsed-field gel electrophoresis (PFGE) --- multilocus sequence typing (MLST) --- IMP-6 --- porin --- efflux pump --- nosocomial infections --- NDM-1 --- Fourier transform infrared spectroscopy --- Eazyplex® SuperBug CRE assay --- extended-spectrum beta-lactamases --- gram-negative rods --- LAMP method --- NDM --- VIM --- molecular epidemiology --- PFGE --- Carbapenemase producing Enterobacterales --- IncX-3 --- one health --- water --- colistin susceptibility testing --- broth microdilution --- colistin broth disc elution --- Vitek 2 compact --- rapid polymyxin NP test --- Etest --- ChromID colistin R agar --- micronaut MIC-strip colistin --- population analysis profiling --- Enterobacterales --- neonates --- plasmid-typing --- sequence type --- wastewater --- virulence


Book
Carbapenemase-Producing Enterobacterales
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Carbapenem-resistant Enterobacterales (CRE) are a common cause of infections in both community and healthcare settings and have become an increasing threat to public health worldwide. The focus of this Special Issue includes aspects concerning plasmid-mediated antimicrobial resistance along with other carbapenem resistance mechanisms. Understanding the prevalence and routes of transmission of CRE is important in developing specific interventions for healthcare facilities, as well as the general impact of CRE circulation on the environment. Attention has also been focused on carbapenemase testing in order to provide advanced phenotypic and molecular assays for the identification of CRE, as a valid tool for active global surveillance, and from this perspective, the study of resistance mechanisms can provide significant support for the development of new and appropriate antimicrobial molecules. For all of these reasons, the phenomenon of carbapenem resistance deserves more attention, for the sake of public health.

Keywords

carbapenem resistance --- carbapenemase --- whole genome sequencing --- long reads, plasmid --- Klebsiella pneumoniae --- extensively drug-resistant --- molecular typing --- carbapenemases --- Enterobacteriales --- human --- animal --- food --- environment --- carbapenemase-producing Enterobacterales --- KPC --- carbapenem --- multidrug resistance --- nosocomial --- Enterobacteriaceae --- ESBL --- resistance genes --- cattle --- blaOXA-48 --- ERIC-PCR --- plasmid profile analysis --- biofilm formation --- PCR-based replicon typing --- antibiotic-resistance --- sequence types --- multilocus sequence typing --- plasmids --- antimicrobial resistance --- carbapenem inactivation method --- carbapenem-resistant Enterobacterales --- real-time multiplex PCR --- whole-genome sequencing --- carbapenem-resistance --- Qatar --- CRE --- OXA-48 --- carbapenems resistance --- Gram-negative bacteria --- infection --- colonization --- COVID-19 --- K. pneumoniae --- porins --- ceftazidime/avibactam --- ESKAPE --- healthcare-associated infections --- antimicrobial peptides --- Temporin L --- Klebsiella michiganensis --- Citrobacter farmeri --- KPC-2 --- plasmid --- transposon --- carbapenem-resistant Enterobacteriaceae (CRE) --- outbreak --- infection control --- pulsed-field gel electrophoresis (PFGE) --- multilocus sequence typing (MLST) --- IMP-6 --- porin --- efflux pump --- nosocomial infections --- NDM-1 --- Fourier transform infrared spectroscopy --- Eazyplex® SuperBug CRE assay --- extended-spectrum beta-lactamases --- gram-negative rods --- LAMP method --- NDM --- VIM --- molecular epidemiology --- PFGE --- Carbapenemase producing Enterobacterales --- IncX-3 --- one health --- water --- colistin susceptibility testing --- broth microdilution --- colistin broth disc elution --- Vitek 2 compact --- rapid polymyxin NP test --- Etest --- ChromID colistin R agar --- micronaut MIC-strip colistin --- population analysis profiling --- Enterobacterales --- neonates --- plasmid-typing --- sequence type --- wastewater --- virulence


Book
Carbapenemase-Producing Enterobacterales
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Carbapenem-resistant Enterobacterales (CRE) are a common cause of infections in both community and healthcare settings and have become an increasing threat to public health worldwide. The focus of this Special Issue includes aspects concerning plasmid-mediated antimicrobial resistance along with other carbapenem resistance mechanisms. Understanding the prevalence and routes of transmission of CRE is important in developing specific interventions for healthcare facilities, as well as the general impact of CRE circulation on the environment. Attention has also been focused on carbapenemase testing in order to provide advanced phenotypic and molecular assays for the identification of CRE, as a valid tool for active global surveillance, and from this perspective, the study of resistance mechanisms can provide significant support for the development of new and appropriate antimicrobial molecules. For all of these reasons, the phenomenon of carbapenem resistance deserves more attention, for the sake of public health.

Keywords

Research & information: general --- Biology, life sciences --- Microbiology (non-medical) --- carbapenem resistance --- carbapenemase --- whole genome sequencing --- long reads, plasmid --- Klebsiella pneumoniae --- extensively drug-resistant --- molecular typing --- carbapenemases --- Enterobacteriales --- human --- animal --- food --- environment --- carbapenemase-producing Enterobacterales --- KPC --- carbapenem --- multidrug resistance --- nosocomial --- Enterobacteriaceae --- ESBL --- resistance genes --- cattle --- blaOXA-48 --- ERIC-PCR --- plasmid profile analysis --- biofilm formation --- PCR-based replicon typing --- antibiotic-resistance --- sequence types --- multilocus sequence typing --- plasmids --- antimicrobial resistance --- carbapenem inactivation method --- carbapenem-resistant Enterobacterales --- real-time multiplex PCR --- whole-genome sequencing --- carbapenem-resistance --- Qatar --- CRE --- OXA-48 --- carbapenems resistance --- Gram-negative bacteria --- infection --- colonization --- COVID-19 --- K. pneumoniae --- porins --- ceftazidime/avibactam --- ESKAPE --- healthcare-associated infections --- antimicrobial peptides --- Temporin L --- Klebsiella michiganensis --- Citrobacter farmeri --- KPC-2 --- plasmid --- transposon --- carbapenem-resistant Enterobacteriaceae (CRE) --- outbreak --- infection control --- pulsed-field gel electrophoresis (PFGE) --- multilocus sequence typing (MLST) --- IMP-6 --- porin --- efflux pump --- nosocomial infections --- NDM-1 --- Fourier transform infrared spectroscopy --- Eazyplex® SuperBug CRE assay --- extended-spectrum beta-lactamases --- gram-negative rods --- LAMP method --- NDM --- VIM --- molecular epidemiology --- PFGE --- Carbapenemase producing Enterobacterales --- IncX-3 --- one health --- water --- colistin susceptibility testing --- broth microdilution --- colistin broth disc elution --- Vitek 2 compact --- rapid polymyxin NP test --- Etest --- ChromID colistin R agar --- micronaut MIC-strip colistin --- population analysis profiling --- Enterobacterales --- neonates --- plasmid-typing --- sequence type --- wastewater --- virulence

Listing 1 - 3 of 3
Sort by