Listing 1 - 10 of 159 | << page >> |
Sort by
|
Choose an application
Number Fields is a textbook for algebraic number theory. It grew out of lecture notes of master courses taught by the author at Radboud University, the Netherlands, over a period of more than four decades. It is self-contained in the sense that it uses only mathematics of a bachelor level, including some Galois theory.Part I of the book contains topics in basic algebraic number theory as they may be presented in a beginning master course on algebraic number theory. It includes the classification of abelian number fields by groups of Dirichlet characters. Class field theory is treated in Part II: the more advanced theory of abelian extensions of number fields in general. Full proofs of its main theorems are given using a 'classical' approach to class field theory, which is in a sense a natural continuation of the basic theory as presented in Part I. The classification is formulated in terms of generalized Dirichlet characters. This 'ideal-theoretic' version of class field theory dates from the first half of the twentieth century. In this book, it is described in modern mathematical language. Another approach, the 'idèlic version', uses topological algebra and group cohomology and originated halfway the last century. The last two chapters provide the connection to this more advanced idèlic version of class field theory. The book focuses on the abstract theory and contains many examples and exercises. For quadratic number fields algorithms are given for their class groups and, in the real case, for the fundamental unit. New concepts are introduced at the moment it makes a real difference to have them available.
Choose an application
The aim of Essential Number Theory is to publish articles of excellent utility and clarity, in all areas of number theory.
Number theory --- Number theory. --- Number study --- Numbers, Theory of --- Algebra
Choose an application
Choose an application
This self-contained and comprehensive textbook of algebraic number theory is useful for advanced undergraduate and graduate students of mathematics. The book discusses proofs of almost all basic significant theorems of algebraic number theory including Dedekind's theorem on splitting of primes, Dirichlet's unit theorem, Minkowski's convex body theorem, Dedekind's discriminant theorem, Hermite's theorem on discriminant, Dirichlet's class number formula, and Dirichlet's theorem on primes in arithmetic progressions. A few research problems arising out of these results are mentioned together with the progress made in the direction of each problem. Following the classical approach of Dedekind's theory of ideals, the book aims at arousing the reader's interest in the current research being held in the subject area. It not only proves basic results but pairs them with recent developments, making the book relevant and thought-provoking. Historical notes are given at various places. Featured with numerous related exercises and examples, this book is of significant value to students and researchers associated with the field. The book also is suitable for independent study. The only prerequisite is basic knowledge of abstract algebra and elementary number theory. .
Choose an application
This book introduces algebraic number theory through the problem of generalizing 'unique prime factorization' from ordinary integers to more general domains. Solving polynomial equations in integers leads naturally to these domains, but unique prime factorization may be lost in the process. To restore it, we need Dedekind's concept of ideals. However, one still needs the supporting concepts of algebraic number field and algebraic integer, and the supporting theory of rings, vector spaces, and modules. It was left to Emmy Noether to encapsulate the properties of rings that make unique prime factorization possible, in what we now call Dedekind rings. The book develops the theory of these concepts, following their history, motivating each conceptual step by pointing to its origins, and focusing on the goal of unique prime factorization with a minimum of distraction or prerequisites. This makes a self-contained easy-to-read book, short enough for a one-semester course.
Choose an application
Algebraic number theory. --- Number theory. --- Number study --- Numbers, Theory of --- Algebra --- Number theory --- Teoria algebraica de nombres
Choose an application
Number theory --- Geometry --- landmeetkunde --- getallenleer
Choose an application
This innovative undergraduate textbook approaches number theory through the lens of abstract algebra. Written in an engaging and whimsical style, this text will introduce students to rings, groups, fields, and other algebraic structures as they discover the key concepts of elementary number theory. Inquiry-based learning (IBL) appears throughout the chapters, allowing students to develop insights for upcoming sections while simultaneously strengthening their understanding of previously covered topics. The text is organized around three core themes: the notion of what a "number" is, and the premise that it takes familiarity with a large variety of number systems to fully explore number theory; the use of Diophantine equations as catalysts for introducing and developing structural ideas; and the role of abstract algebra in number theory, in particular the extent to which it provides the Fundamental Theorem of Arithmetic for various new number systems. Other aspects of modern number theory - including the study of elliptic curves, the analogs between integer and polynomial arithmetic, p-adic arithmetic, and relationships between the spectra of primes in various rings - are included in smaller but persistent threads woven through chapters and exercise sets. Each chapter concludes with exercises organized in four categories: Calculations and Informal Proofs, Formal Proofs, Computation and Experimentation, and General Number Theory Awareness. IBL "Exploration" worksheets appear in many sections, some of which involve numerical investigations. To assist students who may not have experience with programming languages, Python worksheets are available on the book's website. The final chapter provides five additional IBL explorations that reinforce and expand what students have learned, and can be used as starting points for independent projects. The topics covered in these explorations are public key cryptography, Lagrange's four-square theorem, units and Pell's Equation, various cases of the solution to Fermat's Last Theorem, and a peek into other deeper mysteries of algebraic number theory. Students should have a basic familiarity with complex numbers, matrix algebra, vector spaces, and proof techniques, as well as a spirit of adventure to explore the "numberverse.".
Number theory --- Algebra --- algebra --- getallenleer
Choose an application
This book contains selected chapters on perfectoid spaces, their introduction and applications, as invented by Peter Scholze in his Fields Medal winning work. These contributions are presented at the conference on "Perfectoid Spaces" held at the International Centre for Theoretical Sciences, Bengaluru, India, from 9-20 September 2019. The objective of the book is to give an advanced introduction to Scholze's theory and understand the relation between perfectoid spaces and some aspects of arithmetic of modular (or, more generally, automorphic) forms such as representations mod p, lifting of modular forms, completed cohomology, local Langlands program, and special values of L-functions. All chapters are contributed by experts in the area of arithmetic geometry that will facilitate future research in the direction.
Number theory --- Geometry --- landmeetkunde --- getallenleer
Choose an application
Previously, English used to distinguish between singular and plural second person pronouns. However, this distinction was lost during its transition into Modern English, which saw the establishment of the single form you for both singular and plural reference.Despite this, many dialects of English have always continued to explicitly mark number on second person pronouns by resorting to different linguistic strategies, both morphological and analytic. Among such morphological variants is yous, together with a host of different spelling variants such as youse, yiz, and yez, among others.This work is a synchronic, corpus-based investigation of second person plural forms in 20 varieties of English. The corpus under study here (GloWbe) contains 1.9 billion words collected on the web in 2013 and was analysed in order to uncover the usage trends of second person plural forms in present-day English. The picture that emerges displays the diatopic distribution of the forms, in addition to markers of politeness and empathy, singular-reference emphatic markers, attention-getting devices, and possessive determiner, and their frequencies of occurrence. The book pays particular attention to the fundamental function of second person plural forms in the creation and management of the speaker-hearer relationship.
English language --- Grammar --- Number --- Dialects
Listing 1 - 10 of 159 | << page >> |
Sort by
|