Listing 1 - 10 of 46 | << page >> |
Sort by
|
Choose an application
Choose an application
Supercritical fluids. --- Foamed materials. --- Fluids --- Foam --- Materials --- Porous materials
Choose an application
Biopolymers including natural (e.g., polysaccharides, proteins, gums, natural rubbers, bacterial polymers), synthetic (e.g., aliphatic polyesters and polyphosphoester), and biocomposites are of paramount interest in regenerative medicine, due to their availability, processability, and low toxicity. Moreover, the structuration of biopolymer-based materials at the nano- and microscale along with their chemical properties are crucial in the engineering of advanced carriers for drug products. Finally, combination products including or based on biopolymers for controlled drug release offer a powerful solution to improve the tissue integration and biological response of these materials. Understanding the drug delivery mechanisms, efficiency, and toxicity of such systems may be useful for regenerative medicine and pharmaceutical technology. The main aim of the Special Issue on “Biopolymers in Drug Delivery and Regenerative Medicine” is to gather recent findings and current advances on biopolymer research for biomedical applications, particularly in regenerative medicine, wound healing, and drug delivery. Contributions to this issue can be as original research or review articles and may cover all aspects of biopolymer research, ranging from the chemical synthesis and characterization of modified biopolymers, their processing in different morphologies and hierarchical structures, as well as their assessment for biomedical uses.
Medicine --- curcumin --- pectin aerogels --- chitosan coating --- burst release --- controlled release --- Keratose --- drug-coated balloon --- paclitaxel --- drug delivery --- pre-clinical --- peripheral arterial disease --- endovascular --- cellulose phosphate --- cellulose phosphate aerogel --- interconnected porosity --- supercritical carbon dioxide --- tetrabutylammonium fluoride --- TBAF/DMSO --- polysaccharide --- κ-carrageenan --- dexamethasone --- electrochemical active deliver system --- doping agent --- charged molecule --- conductive polymers --- colorectal cancer --- antioxidants --- 5-fluorouracil --- polymer nanomaterials --- nanocapsules --- chemotherapy --- cryogel --- starch --- NMR spectroscopy --- morphology --- drug release --- polysaccharides --- hydrogels --- prilling --- droplets --- ionotropic gelation --- drying --- xerogels --- cryogels --- aerogels --- lipid microparticles --- PGSS® --- supercritical CO2 --- modeling --- solvent-free technology --- biomaterials --- porous materials --- biomimetic --- multi-stimulation --- tissue engineering --- n/a
Choose an application
Biopolymers including natural (e.g., polysaccharides, proteins, gums, natural rubbers, bacterial polymers), synthetic (e.g., aliphatic polyesters and polyphosphoester), and biocomposites are of paramount interest in regenerative medicine, due to their availability, processability, and low toxicity. Moreover, the structuration of biopolymer-based materials at the nano- and microscale along with their chemical properties are crucial in the engineering of advanced carriers for drug products. Finally, combination products including or based on biopolymers for controlled drug release offer a powerful solution to improve the tissue integration and biological response of these materials. Understanding the drug delivery mechanisms, efficiency, and toxicity of such systems may be useful for regenerative medicine and pharmaceutical technology. The main aim of the Special Issue on “Biopolymers in Drug Delivery and Regenerative Medicine” is to gather recent findings and current advances on biopolymer research for biomedical applications, particularly in regenerative medicine, wound healing, and drug delivery. Contributions to this issue can be as original research or review articles and may cover all aspects of biopolymer research, ranging from the chemical synthesis and characterization of modified biopolymers, their processing in different morphologies and hierarchical structures, as well as their assessment for biomedical uses.
curcumin --- pectin aerogels --- chitosan coating --- burst release --- controlled release --- Keratose --- drug-coated balloon --- paclitaxel --- drug delivery --- pre-clinical --- peripheral arterial disease --- endovascular --- cellulose phosphate --- cellulose phosphate aerogel --- interconnected porosity --- supercritical carbon dioxide --- tetrabutylammonium fluoride --- TBAF/DMSO --- polysaccharide --- κ-carrageenan --- dexamethasone --- electrochemical active deliver system --- doping agent --- charged molecule --- conductive polymers --- colorectal cancer --- antioxidants --- 5-fluorouracil --- polymer nanomaterials --- nanocapsules --- chemotherapy --- cryogel --- starch --- NMR spectroscopy --- morphology --- drug release --- polysaccharides --- hydrogels --- prilling --- droplets --- ionotropic gelation --- drying --- xerogels --- cryogels --- aerogels --- lipid microparticles --- PGSS® --- supercritical CO2 --- modeling --- solvent-free technology --- biomaterials --- porous materials --- biomimetic --- multi-stimulation --- tissue engineering --- n/a
Choose an application
Biopolymers including natural (e.g., polysaccharides, proteins, gums, natural rubbers, bacterial polymers), synthetic (e.g., aliphatic polyesters and polyphosphoester), and biocomposites are of paramount interest in regenerative medicine, due to their availability, processability, and low toxicity. Moreover, the structuration of biopolymer-based materials at the nano- and microscale along with their chemical properties are crucial in the engineering of advanced carriers for drug products. Finally, combination products including or based on biopolymers for controlled drug release offer a powerful solution to improve the tissue integration and biological response of these materials. Understanding the drug delivery mechanisms, efficiency, and toxicity of such systems may be useful for regenerative medicine and pharmaceutical technology. The main aim of the Special Issue on “Biopolymers in Drug Delivery and Regenerative Medicine” is to gather recent findings and current advances on biopolymer research for biomedical applications, particularly in regenerative medicine, wound healing, and drug delivery. Contributions to this issue can be as original research or review articles and may cover all aspects of biopolymer research, ranging from the chemical synthesis and characterization of modified biopolymers, their processing in different morphologies and hierarchical structures, as well as their assessment for biomedical uses.
Medicine --- curcumin --- pectin aerogels --- chitosan coating --- burst release --- controlled release --- Keratose --- drug-coated balloon --- paclitaxel --- drug delivery --- pre-clinical --- peripheral arterial disease --- endovascular --- cellulose phosphate --- cellulose phosphate aerogel --- interconnected porosity --- supercritical carbon dioxide --- tetrabutylammonium fluoride --- TBAF/DMSO --- polysaccharide --- κ-carrageenan --- dexamethasone --- electrochemical active deliver system --- doping agent --- charged molecule --- conductive polymers --- colorectal cancer --- antioxidants --- 5-fluorouracil --- polymer nanomaterials --- nanocapsules --- chemotherapy --- cryogel --- starch --- NMR spectroscopy --- morphology --- drug release --- polysaccharides --- hydrogels --- prilling --- droplets --- ionotropic gelation --- drying --- xerogels --- cryogels --- aerogels --- lipid microparticles --- PGSS® --- supercritical CO2 --- modeling --- solvent-free technology --- biomaterials --- porous materials --- biomimetic --- multi-stimulation --- tissue engineering
Choose an application
Nanostructured zinc oxide materials are capturing a great deal of interest thanks to their outstanding and multifunctional properties, enabling broad series of intervention in the field of nanomedicine. ZnO can be easily prepared in a broad variety of shapes and shows anticancer and antimicrobial properties that are of interest for tissue engineering, controlled delivery of therapeutics, and even theranostics. This book is thus dedicated to the most recent advances in the field, presented as a collection of research papers and reviews. It spans from the synthesis and characterization of ZnO nanomaterials to their applications in the nanomedicine field, ranging from anticancer nanotherapeutics to dental implants and antibacterial agents.
Technology: general issues --- ZnO nanoparticles --- Quantum dots --- theranostic --- drug delivery --- anti-tumour --- diabetes treatment --- anti-inflammation --- antibacterial --- antifungal --- wound healing --- denture stomatitis --- polymethylmethacrylate --- zinc oxide nanoparticles --- Candida albicans --- mesoporous glasses --- ZnO-additions --- osteostatin loading --- osteosteoblast cell cultures --- osteogenic effect --- zinc oxide --- microwave solvothermal synthesis --- hydrodynamic size --- surface chemistry --- nanocrystals --- cell cytotoxicity --- Supercritical CO2 --- ibuprofen --- NsZnO --- antimicrobial activity --- n/a
Choose an application
Energies SI Book "Selected Papers from the ICEUBI2019 – International Congress on Engineering – Engineering for Evolution", groups six papers into fundamental engineering areas: Aeronautics and Astronautics, and Electrotechnical and Mechanical Engineering. ICEUBI—International Congress on Engineering is organized every two years by the Engineering Faculty of Beira Interior University, Portugal, promoting engineering in society through contact among researchers and practitioners from different fields of engineering, and thus encouraging the dissemination of engineering research, innovation, and development. All selected papers are interrelated with energy topics (fundamentals, sources, exploration, conversion, and policies), and provide relevant data for academics, research-focused practitioners, and policy makers.
Technology: general issues --- HVAC --- water-cooled condenser --- air-cooled condenser --- evaporative --- TWI --- turbulence modeling --- supercritical injection --- Liquid Rocket Engines --- energy saving and efficiency --- aerodynamic coefficients --- propulsive efficiency --- bioenergetics --- biomimetics --- grid-tied inverter --- grey wolf optimizer --- PR controllers --- LCL filter --- passive damping --- propeller --- aircraft --- turboprop --- flight efficiency --- flight speed --- hydro-thermal coordination --- Lagrangian relaxation --- Lagrangian dual problem --- Lagrange multipliers --- subgradient methods --- step-size update algorithm
Choose an application
Nanostructured zinc oxide materials are capturing a great deal of interest thanks to their outstanding and multifunctional properties, enabling broad series of intervention in the field of nanomedicine. ZnO can be easily prepared in a broad variety of shapes and shows anticancer and antimicrobial properties that are of interest for tissue engineering, controlled delivery of therapeutics, and even theranostics. This book is thus dedicated to the most recent advances in the field, presented as a collection of research papers and reviews. It spans from the synthesis and characterization of ZnO nanomaterials to their applications in the nanomedicine field, ranging from anticancer nanotherapeutics to dental implants and antibacterial agents.
ZnO nanoparticles --- Quantum dots --- theranostic --- drug delivery --- anti-tumour --- diabetes treatment --- anti-inflammation --- antibacterial --- antifungal --- wound healing --- denture stomatitis --- polymethylmethacrylate --- zinc oxide nanoparticles --- Candida albicans --- mesoporous glasses --- ZnO-additions --- osteostatin loading --- osteosteoblast cell cultures --- osteogenic effect --- zinc oxide --- microwave solvothermal synthesis --- hydrodynamic size --- surface chemistry --- nanocrystals --- cell cytotoxicity --- Supercritical CO2 --- ibuprofen --- NsZnO --- antimicrobial activity --- n/a
Choose an application
Energies SI Book "Selected Papers from the ICEUBI2019 – International Congress on Engineering – Engineering for Evolution", groups six papers into fundamental engineering areas: Aeronautics and Astronautics, and Electrotechnical and Mechanical Engineering. ICEUBI—International Congress on Engineering is organized every two years by the Engineering Faculty of Beira Interior University, Portugal, promoting engineering in society through contact among researchers and practitioners from different fields of engineering, and thus encouraging the dissemination of engineering research, innovation, and development. All selected papers are interrelated with energy topics (fundamentals, sources, exploration, conversion, and policies), and provide relevant data for academics, research-focused practitioners, and policy makers.
HVAC --- water-cooled condenser --- air-cooled condenser --- evaporative --- TWI --- turbulence modeling --- supercritical injection --- Liquid Rocket Engines --- energy saving and efficiency --- aerodynamic coefficients --- propulsive efficiency --- bioenergetics --- biomimetics --- grid-tied inverter --- grey wolf optimizer --- PR controllers --- LCL filter --- passive damping --- propeller --- aircraft --- turboprop --- flight efficiency --- flight speed --- hydro-thermal coordination --- Lagrangian relaxation --- Lagrangian dual problem --- Lagrange multipliers --- subgradient methods --- step-size update algorithm
Choose an application
Nanostructured zinc oxide materials are capturing a great deal of interest thanks to their outstanding and multifunctional properties, enabling broad series of intervention in the field of nanomedicine. ZnO can be easily prepared in a broad variety of shapes and shows anticancer and antimicrobial properties that are of interest for tissue engineering, controlled delivery of therapeutics, and even theranostics. This book is thus dedicated to the most recent advances in the field, presented as a collection of research papers and reviews. It spans from the synthesis and characterization of ZnO nanomaterials to their applications in the nanomedicine field, ranging from anticancer nanotherapeutics to dental implants and antibacterial agents.
Technology: general issues --- ZnO nanoparticles --- Quantum dots --- theranostic --- drug delivery --- anti-tumour --- diabetes treatment --- anti-inflammation --- antibacterial --- antifungal --- wound healing --- denture stomatitis --- polymethylmethacrylate --- zinc oxide nanoparticles --- Candida albicans --- mesoporous glasses --- ZnO-additions --- osteostatin loading --- osteosteoblast cell cultures --- osteogenic effect --- zinc oxide --- microwave solvothermal synthesis --- hydrodynamic size --- surface chemistry --- nanocrystals --- cell cytotoxicity --- Supercritical CO2 --- ibuprofen --- NsZnO --- antimicrobial activity
Listing 1 - 10 of 46 | << page >> |
Sort by
|