Narrow your search

Library

ULiège (2)

KU Leuven (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

VIVES (1)


Resource type

book (2)


Language

English (2)


Year
From To Submit

2021 (2)

Listing 1 - 2 of 2
Sort by

Book
Rich quasiparticle properties of low dimensional systems
Authors: --- --- --- --- --- et al.
ISBN: 0750337826 0750337834 9780750337823 9780750337830 Year: 2021 Publisher: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book discusses the essential properties of carbon nanotubes and 2D graphene systems. The book focuses on the fundamental excitation properties of a large range of graphene-related materials, presenting a new theoretical framework that couples electronic properties and e-e Coulomb interactions together in order to thoroughly explore Coulomb excitations and decay rates in carbon-nanotube-related systems.


Book
Theory of generation and conversion of phonon angular momentum
Author:
ISBN: 9813346906 9813346892 Year: 2021 Publisher: Gateway East, Singapore : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents a theoretical study of the generation and conversion of phonon angular momentum in crystals. Recently, rotational motions of lattice vibrations, i.e., phonons, in crystals attract considerable attentions. As such, the book theoretically demonstrate generations of phonons with rotational motions, based on model calculations and first-principle calculations. In systems without inversion symmetry, the phonon angular momentum is shown to be caused by the temperature gradient, which is demonstrated in crystals such as wurtzite gallium nitride, tellurium, and selenium using the first-principle calculations. In systems with neither time-reversal nor inversion symmetries, the phonon angular momentum is shown to be generated by an electric field. Secondly, the book presents the microscopic mechanisms developed by the author and his collaborator on how these microscopic rotations of nuclei are coupled with electron spins. These predictions serve as building blocks for spintronics with phonons or mechanical motions.

Listing 1 - 2 of 2
Sort by