Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2021 (6)

Listing 1 - 6 of 6
Sort by

Book
Biopolymers in Drug Delivery and Regenerative Medicine
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biopolymers including natural (e.g., polysaccharides, proteins, gums, natural rubbers, bacterial polymers), synthetic (e.g., aliphatic polyesters and polyphosphoester), and biocomposites are of paramount interest in regenerative medicine, due to their availability, processability, and low toxicity. Moreover, the structuration of biopolymer-based materials at the nano- and microscale along with their chemical properties are crucial in the engineering of advanced carriers for drug products. Finally, combination products including or based on biopolymers for controlled drug release offer a powerful solution to improve the tissue integration and biological response of these materials. Understanding the drug delivery mechanisms, efficiency, and toxicity of such systems may be useful for regenerative medicine and pharmaceutical technology. The main aim of the Special Issue on “Biopolymers in Drug Delivery and Regenerative Medicine” is to gather recent findings and current advances on biopolymer research for biomedical applications, particularly in regenerative medicine, wound healing, and drug delivery. Contributions to this issue can be as original research or review articles and may cover all aspects of biopolymer research, ranging from the chemical synthesis and characterization of modified biopolymers, their processing in different morphologies and hierarchical structures, as well as their assessment for biomedical uses.


Book
Biopolymers in Drug Delivery and Regenerative Medicine
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biopolymers including natural (e.g., polysaccharides, proteins, gums, natural rubbers, bacterial polymers), synthetic (e.g., aliphatic polyesters and polyphosphoester), and biocomposites are of paramount interest in regenerative medicine, due to their availability, processability, and low toxicity. Moreover, the structuration of biopolymer-based materials at the nano- and microscale along with their chemical properties are crucial in the engineering of advanced carriers for drug products. Finally, combination products including or based on biopolymers for controlled drug release offer a powerful solution to improve the tissue integration and biological response of these materials. Understanding the drug delivery mechanisms, efficiency, and toxicity of such systems may be useful for regenerative medicine and pharmaceutical technology. The main aim of the Special Issue on “Biopolymers in Drug Delivery and Regenerative Medicine” is to gather recent findings and current advances on biopolymer research for biomedical applications, particularly in regenerative medicine, wound healing, and drug delivery. Contributions to this issue can be as original research or review articles and may cover all aspects of biopolymer research, ranging from the chemical synthesis and characterization of modified biopolymers, their processing in different morphologies and hierarchical structures, as well as their assessment for biomedical uses.


Book
Biopolymers in Drug Delivery and Regenerative Medicine
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biopolymers including natural (e.g., polysaccharides, proteins, gums, natural rubbers, bacterial polymers), synthetic (e.g., aliphatic polyesters and polyphosphoester), and biocomposites are of paramount interest in regenerative medicine, due to their availability, processability, and low toxicity. Moreover, the structuration of biopolymer-based materials at the nano- and microscale along with their chemical properties are crucial in the engineering of advanced carriers for drug products. Finally, combination products including or based on biopolymers for controlled drug release offer a powerful solution to improve the tissue integration and biological response of these materials. Understanding the drug delivery mechanisms, efficiency, and toxicity of such systems may be useful for regenerative medicine and pharmaceutical technology. The main aim of the Special Issue on “Biopolymers in Drug Delivery and Regenerative Medicine” is to gather recent findings and current advances on biopolymer research for biomedical applications, particularly in regenerative medicine, wound healing, and drug delivery. Contributions to this issue can be as original research or review articles and may cover all aspects of biopolymer research, ranging from the chemical synthesis and characterization of modified biopolymers, their processing in different morphologies and hierarchical structures, as well as their assessment for biomedical uses.


Book
Environmentally Friendly Polymers and Polymer Composites
Authors: --- --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Continuous research advances have been observed in the field of environmentally-friendly polymers and polymer composites due to the dependence of polymers on fossil fuels and the sustainability issues related to plastic wastes. This book compiles the most recent research works in biopolymers, their blends and composites, and the use of natural additives, such as vegetable oils and other renewable and waste-derived liquids, with their marked environmental efficiency devoted to developing novel sustainable materials. Therefore, Environmentally Friendly Polymers and Polymer Composites provides an overview to scientists of the potential of these environmentally friendly materials and helps engineers to apply these new materials for industrial purposes.

Keywords

Research & information: general --- PLA --- PCL --- TPS --- biopolymer blends --- mechanical properties --- compostable plastics --- green composites --- natural fillers --- poly(butylene succinate) (PBS) --- almond shell flour (ASF) --- poly (lactic acid) (PLA) --- poly(butylene succinate-co-adipate) (PBSA) --- binary blends --- shape memory behaviour --- polymer‒matrix composites (PMCs) --- thermomechanical --- electron microscopy --- compatibilizers --- poly(lactic acid) (PLA) --- natural fibre (NF) --- nano-hydroxyapatite (nHA) --- flammability --- crab shell --- chitin --- spherical microgels --- reverse micelle --- gelation --- chitosan (CS) --- anti-oxidant --- anti-apoptotic activity --- rotenone --- Parkinson’s disease (PD) --- composite materials --- hybrid resin --- natural reinforcement --- non-uniformities --- mechanical behavior --- antifungal activity --- dendrimer --- Origanum majorana L. essential oil --- Phytophthora infestans --- maleinized linseed oil MLO --- poly(lactic acid) --- diatomaceous earth --- biocomposites --- active containers --- polymer mixtures --- blends --- cashew nut shell liquid (CNSL) --- polypropylene --- high impact polystyrene --- compatibilization --- PHB --- PHBV --- rice husk --- biosustainability --- waste valorization --- bacterial cellulose --- natural rubber --- reinforcing --- biodegradable polymers --- Arboform --- epoxidized oil --- maleinized linseed oil --- toughness --- thermal stability --- pectin --- food packaging --- active compounds --- agro-waste residues --- circular economy --- graphene oxide --- size selection --- sodium alginate --- bio-based polymers --- biodegradable polyesters --- wood plastic composites --- natural additives and fillers --- composites characterization --- bioplastics manufacturing


Book
Environmentally Friendly Polymers and Polymer Composites
Authors: --- --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Continuous research advances have been observed in the field of environmentally-friendly polymers and polymer composites due to the dependence of polymers on fossil fuels and the sustainability issues related to plastic wastes. This book compiles the most recent research works in biopolymers, their blends and composites, and the use of natural additives, such as vegetable oils and other renewable and waste-derived liquids, with their marked environmental efficiency devoted to developing novel sustainable materials. Therefore, Environmentally Friendly Polymers and Polymer Composites provides an overview to scientists of the potential of these environmentally friendly materials and helps engineers to apply these new materials for industrial purposes.

Keywords

PLA --- PCL --- TPS --- biopolymer blends --- mechanical properties --- compostable plastics --- green composites --- natural fillers --- poly(butylene succinate) (PBS) --- almond shell flour (ASF) --- poly (lactic acid) (PLA) --- poly(butylene succinate-co-adipate) (PBSA) --- binary blends --- shape memory behaviour --- polymer‒matrix composites (PMCs) --- thermomechanical --- electron microscopy --- compatibilizers --- poly(lactic acid) (PLA) --- natural fibre (NF) --- nano-hydroxyapatite (nHA) --- flammability --- crab shell --- chitin --- spherical microgels --- reverse micelle --- gelation --- chitosan (CS) --- anti-oxidant --- anti-apoptotic activity --- rotenone --- Parkinson’s disease (PD) --- composite materials --- hybrid resin --- natural reinforcement --- non-uniformities --- mechanical behavior --- antifungal activity --- dendrimer --- Origanum majorana L. essential oil --- Phytophthora infestans --- maleinized linseed oil MLO --- poly(lactic acid) --- diatomaceous earth --- biocomposites --- active containers --- polymer mixtures --- blends --- cashew nut shell liquid (CNSL) --- polypropylene --- high impact polystyrene --- compatibilization --- PHB --- PHBV --- rice husk --- biosustainability --- waste valorization --- bacterial cellulose --- natural rubber --- reinforcing --- biodegradable polymers --- Arboform --- epoxidized oil --- maleinized linseed oil --- toughness --- thermal stability --- pectin --- food packaging --- active compounds --- agro-waste residues --- circular economy --- graphene oxide --- size selection --- sodium alginate --- bio-based polymers --- biodegradable polyesters --- wood plastic composites --- natural additives and fillers --- composites characterization --- bioplastics manufacturing


Book
Environmentally Friendly Polymers and Polymer Composites
Authors: --- --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Continuous research advances have been observed in the field of environmentally-friendly polymers and polymer composites due to the dependence of polymers on fossil fuels and the sustainability issues related to plastic wastes. This book compiles the most recent research works in biopolymers, their blends and composites, and the use of natural additives, such as vegetable oils and other renewable and waste-derived liquids, with their marked environmental efficiency devoted to developing novel sustainable materials. Therefore, Environmentally Friendly Polymers and Polymer Composites provides an overview to scientists of the potential of these environmentally friendly materials and helps engineers to apply these new materials for industrial purposes.

Keywords

Research & information: general --- PLA --- PCL --- TPS --- biopolymer blends --- mechanical properties --- compostable plastics --- green composites --- natural fillers --- poly(butylene succinate) (PBS) --- almond shell flour (ASF) --- poly (lactic acid) (PLA) --- poly(butylene succinate-co-adipate) (PBSA) --- binary blends --- shape memory behaviour --- polymer‒matrix composites (PMCs) --- thermomechanical --- electron microscopy --- compatibilizers --- poly(lactic acid) (PLA) --- natural fibre (NF) --- nano-hydroxyapatite (nHA) --- flammability --- crab shell --- chitin --- spherical microgels --- reverse micelle --- gelation --- chitosan (CS) --- anti-oxidant --- anti-apoptotic activity --- rotenone --- Parkinson’s disease (PD) --- composite materials --- hybrid resin --- natural reinforcement --- non-uniformities --- mechanical behavior --- antifungal activity --- dendrimer --- Origanum majorana L. essential oil --- Phytophthora infestans --- maleinized linseed oil MLO --- poly(lactic acid) --- diatomaceous earth --- biocomposites --- active containers --- polymer mixtures --- blends --- cashew nut shell liquid (CNSL) --- polypropylene --- high impact polystyrene --- compatibilization --- PHB --- PHBV --- rice husk --- biosustainability --- waste valorization --- bacterial cellulose --- natural rubber --- reinforcing --- biodegradable polymers --- Arboform --- epoxidized oil --- maleinized linseed oil --- toughness --- thermal stability --- pectin --- food packaging --- active compounds --- agro-waste residues --- circular economy --- graphene oxide --- size selection --- sodium alginate --- bio-based polymers --- biodegradable polyesters --- wood plastic composites --- natural additives and fillers --- composites characterization --- bioplastics manufacturing

Listing 1 - 6 of 6
Sort by