Narrow your search

Library

FARO (5)

KU Leuven (5)

LUCA School of Arts (5)

Odisee (5)

Thomas More Kempen (5)

Thomas More Mechelen (5)

UCLL (5)

ULB (5)

ULiège (5)

VIVES (5)

More...

Resource type

book (15)


Language

English (15)


Year
From To Submit

2021 (15)

Listing 1 - 10 of 15 << page
of 2
>>
Sort by

Book
Nanowire Field-Effect Transistor (FET)
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the last few years, the leading semiconductor industries have introduced multi-gate non-planar transistors into their core business. These are being applied in memories and in logical integrated circuits to achieve better integration on the chip, increased performance, and reduced energy consumption. Intense research is underway to develop these devices further and to address their limitations, in order to continue transistor scaling while further improving performance. This Special Issue looks at recent developments in the field of nanowire field-effect transistors (NW-FETs), covering different aspects of the technology, physics, and modelling of these nanoscale devices.

Keywords

History of engineering & technology --- random dopant --- drift-diffusion --- variability --- device simulation --- nanodevice --- screening --- Coulomb interaction --- III-V --- TASE --- MOSFETs --- Integration --- nanowire field-effect transistors --- silicon nanomaterials --- charge transport --- one-dimensional multi-subband scattering models --- Kubo–Greenwood formalism --- schrödinger-poisson solvers --- DC and AC characteristic fluctuations --- gate-all-around --- nanowire --- work function fluctuation --- aspect ratio of channel cross-section --- timing fluctuation --- noise margin fluctuation --- power fluctuation --- CMOS circuit --- statistical device simulation --- variability effects --- Monte Carlo --- Schrödinger based quantum corrections --- quantum modeling --- nonequilibrium Green’s function --- nanowire transistor --- electron–phonon interaction --- phonon–phonon interaction --- self-consistent Born approximation --- lowest order approximation --- Padé approximants --- Richardson extrapolation --- ZnO --- field effect transistor --- conduction mechanism --- metal gate --- material properties --- fabrication --- modelling --- nanojunction --- constriction --- quantum electron transport --- quantum confinement --- dimensionality reduction --- stochastic Schrödinger equations --- geometric correlations --- silicon nanowires --- nano-transistors --- quantum transport --- hot electrons --- self-cooling --- nano-cooling --- thermoelectricity --- heat equation --- non-equilibrium Green functions --- power dissipation


Book
Nanowire Field-Effect Transistor (FET)
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the last few years, the leading semiconductor industries have introduced multi-gate non-planar transistors into their core business. These are being applied in memories and in logical integrated circuits to achieve better integration on the chip, increased performance, and reduced energy consumption. Intense research is underway to develop these devices further and to address their limitations, in order to continue transistor scaling while further improving performance. This Special Issue looks at recent developments in the field of nanowire field-effect transistors (NW-FETs), covering different aspects of the technology, physics, and modelling of these nanoscale devices.

Keywords

random dopant --- drift-diffusion --- variability --- device simulation --- nanodevice --- screening --- Coulomb interaction --- III-V --- TASE --- MOSFETs --- Integration --- nanowire field-effect transistors --- silicon nanomaterials --- charge transport --- one-dimensional multi-subband scattering models --- Kubo–Greenwood formalism --- schrödinger-poisson solvers --- DC and AC characteristic fluctuations --- gate-all-around --- nanowire --- work function fluctuation --- aspect ratio of channel cross-section --- timing fluctuation --- noise margin fluctuation --- power fluctuation --- CMOS circuit --- statistical device simulation --- variability effects --- Monte Carlo --- Schrödinger based quantum corrections --- quantum modeling --- nonequilibrium Green’s function --- nanowire transistor --- electron–phonon interaction --- phonon–phonon interaction --- self-consistent Born approximation --- lowest order approximation --- Padé approximants --- Richardson extrapolation --- ZnO --- field effect transistor --- conduction mechanism --- metal gate --- material properties --- fabrication --- modelling --- nanojunction --- constriction --- quantum electron transport --- quantum confinement --- dimensionality reduction --- stochastic Schrödinger equations --- geometric correlations --- silicon nanowires --- nano-transistors --- quantum transport --- hot electrons --- self-cooling --- nano-cooling --- thermoelectricity --- heat equation --- non-equilibrium Green functions --- power dissipation


Book
Nanowire Field-Effect Transistor (FET)
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the last few years, the leading semiconductor industries have introduced multi-gate non-planar transistors into their core business. These are being applied in memories and in logical integrated circuits to achieve better integration on the chip, increased performance, and reduced energy consumption. Intense research is underway to develop these devices further and to address their limitations, in order to continue transistor scaling while further improving performance. This Special Issue looks at recent developments in the field of nanowire field-effect transistors (NW-FETs), covering different aspects of the technology, physics, and modelling of these nanoscale devices.

Keywords

History of engineering & technology --- random dopant --- drift-diffusion --- variability --- device simulation --- nanodevice --- screening --- Coulomb interaction --- III-V --- TASE --- MOSFETs --- Integration --- nanowire field-effect transistors --- silicon nanomaterials --- charge transport --- one-dimensional multi-subband scattering models --- Kubo–Greenwood formalism --- schrödinger-poisson solvers --- DC and AC characteristic fluctuations --- gate-all-around --- nanowire --- work function fluctuation --- aspect ratio of channel cross-section --- timing fluctuation --- noise margin fluctuation --- power fluctuation --- CMOS circuit --- statistical device simulation --- variability effects --- Monte Carlo --- Schrödinger based quantum corrections --- quantum modeling --- nonequilibrium Green’s function --- nanowire transistor --- electron–phonon interaction --- phonon–phonon interaction --- self-consistent Born approximation --- lowest order approximation --- Padé approximants --- Richardson extrapolation --- ZnO --- field effect transistor --- conduction mechanism --- metal gate --- material properties --- fabrication --- modelling --- nanojunction --- constriction --- quantum electron transport --- quantum confinement --- dimensionality reduction --- stochastic Schrödinger equations --- geometric correlations --- silicon nanowires --- nano-transistors --- quantum transport --- hot electrons --- self-cooling --- nano-cooling --- thermoelectricity --- heat equation --- non-equilibrium Green functions --- power dissipation


Book
Wide Bandgap Based Devices : Design, Fabrication and Applications
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Emerging wide bandgap (WBG) semiconductors hold the potential to advance the global industry in the same way that, more than 50 years ago, the invention of the silicon (Si) chip enabled the modern computer era. SiC- and GaN-based devices are starting to become more commercially available. Smaller, faster, and more efficient than their counterpart Si-based components, these WBG devices also offer greater expected reliability in tougher operating conditions. Furthermore, in this frame, a new class of microelectronic-grade semiconducting materials that have an even larger bandgap than the previously established wide bandgap semiconductors, such as GaN and SiC, have been created, and are thus referred to as “ultra-wide bandgap” materials. These materials, which include AlGaN, AlN, diamond, Ga2O3, and BN, offer theoretically superior properties, including a higher critical breakdown field, higher temperature operation, and potentially higher radiation tolerance. These attributes, in turn, make it possible to use revolutionary new devices for extreme environments, such as high-efficiency power transistors, because of the improved Baliga figure of merit, ultra-high voltage pulsed power switches, high-efficiency UV-LEDs, and electronics. This Special Issue aims to collect high quality research papers, short communications, and review articles that focus on wide bandgap device design, fabrication, and advanced characterization. The Special Issue will also publish selected papers from the 43rd Workshop on Compound Semiconductor Devices and Integrated Circuits, held in France (WOCSDICE 2019), which brings together scientists and engineers working in the area of III–V, and other compound semiconductor devices and integrated circuits.

Keywords

Technology: general issues --- GaN --- high-electron-mobility transistor (HEMT) --- ultra-wide band gap --- GaN-based vertical-cavity surface-emitting laser (VCSEL) --- composition-graded AlxGa1−xN electron blocking layer (EBL) --- electron leakage --- GaN laser diode --- distributed feedback (DFB) --- surface gratings --- sidewall gratings --- AlGaN/GaN --- proton irradiation --- time-dependent dielectric breakdown (TDDB) --- reliability --- normally off --- power cycle test --- SiC micro-heater chip --- direct bonded copper (DBC) substrate --- Ag sinter paste --- wide band-gap (WBG) --- thermal resistance --- amorphous InGaZnO --- thin-film transistor --- nitrogen-doping --- buried-channel --- stability --- 4H-SiC --- turn-off loss --- ON-state voltage --- breakdown voltage (BV) --- IGBT --- wide-bandgap semiconductor --- high electron mobility transistors --- vertical gate structure --- normally-off operation --- gallium nitride --- asymmetric multiple quantum wells --- barrier thickness --- InGaN laser diodes --- optical absorption loss --- electron leakage current --- wide band gap semiconductors --- numerical simulation --- terahertz Gunn diode --- grooved-anode diode --- Gallium nitride (GaN) high-electron-mobility transistors (HEMTs) --- vertical breakdown voltage --- buffer trapping effect --- gallium nitride (GaN) --- power switching device --- active power filter (APF) --- power quality (PQ) --- metal-insulator-semiconductor high-electron-mobility transistor (MIS-HEMT) --- recessed gate --- double barrier --- high-electron-mobility transistors --- copper metallization --- millimeter wave --- wide bandgap semiconductors --- flexible devices --- silver nanoring --- silver nanowire --- polyol method --- cosolvent --- tungsten trioxide film --- spin coating --- optical band gap --- morphology --- electrochromism --- self-align --- hierarchical nanostructures --- ZnO nanorod/NiO nanosheet --- photon extraction efficiency --- photonic emitter --- wideband --- HEMT --- power amplifier --- jammer system --- GaN 5G --- high electron mobility transistors (HEMT) --- new radio --- RF front-end --- AESA radars --- transmittance --- distortions --- optimization --- GaN-on-GaN --- schottky barrier diodes --- high-energy α-particle detection --- low voltage --- thick depletion width detectors --- n/a


Book
Wide Bandgap Based Devices : Design, Fabrication and Applications
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Emerging wide bandgap (WBG) semiconductors hold the potential to advance the global industry in the same way that, more than 50 years ago, the invention of the silicon (Si) chip enabled the modern computer era. SiC- and GaN-based devices are starting to become more commercially available. Smaller, faster, and more efficient than their counterpart Si-based components, these WBG devices also offer greater expected reliability in tougher operating conditions. Furthermore, in this frame, a new class of microelectronic-grade semiconducting materials that have an even larger bandgap than the previously established wide bandgap semiconductors, such as GaN and SiC, have been created, and are thus referred to as “ultra-wide bandgap” materials. These materials, which include AlGaN, AlN, diamond, Ga2O3, and BN, offer theoretically superior properties, including a higher critical breakdown field, higher temperature operation, and potentially higher radiation tolerance. These attributes, in turn, make it possible to use revolutionary new devices for extreme environments, such as high-efficiency power transistors, because of the improved Baliga figure of merit, ultra-high voltage pulsed power switches, high-efficiency UV-LEDs, and electronics. This Special Issue aims to collect high quality research papers, short communications, and review articles that focus on wide bandgap device design, fabrication, and advanced characterization. The Special Issue will also publish selected papers from the 43rd Workshop on Compound Semiconductor Devices and Integrated Circuits, held in France (WOCSDICE 2019), which brings together scientists and engineers working in the area of III–V, and other compound semiconductor devices and integrated circuits.

Keywords

GaN --- high-electron-mobility transistor (HEMT) --- ultra-wide band gap --- GaN-based vertical-cavity surface-emitting laser (VCSEL) --- composition-graded AlxGa1−xN electron blocking layer (EBL) --- electron leakage --- GaN laser diode --- distributed feedback (DFB) --- surface gratings --- sidewall gratings --- AlGaN/GaN --- proton irradiation --- time-dependent dielectric breakdown (TDDB) --- reliability --- normally off --- power cycle test --- SiC micro-heater chip --- direct bonded copper (DBC) substrate --- Ag sinter paste --- wide band-gap (WBG) --- thermal resistance --- amorphous InGaZnO --- thin-film transistor --- nitrogen-doping --- buried-channel --- stability --- 4H-SiC --- turn-off loss --- ON-state voltage --- breakdown voltage (BV) --- IGBT --- wide-bandgap semiconductor --- high electron mobility transistors --- vertical gate structure --- normally-off operation --- gallium nitride --- asymmetric multiple quantum wells --- barrier thickness --- InGaN laser diodes --- optical absorption loss --- electron leakage current --- wide band gap semiconductors --- numerical simulation --- terahertz Gunn diode --- grooved-anode diode --- Gallium nitride (GaN) high-electron-mobility transistors (HEMTs) --- vertical breakdown voltage --- buffer trapping effect --- gallium nitride (GaN) --- power switching device --- active power filter (APF) --- power quality (PQ) --- metal-insulator-semiconductor high-electron-mobility transistor (MIS-HEMT) --- recessed gate --- double barrier --- high-electron-mobility transistors --- copper metallization --- millimeter wave --- wide bandgap semiconductors --- flexible devices --- silver nanoring --- silver nanowire --- polyol method --- cosolvent --- tungsten trioxide film --- spin coating --- optical band gap --- morphology --- electrochromism --- self-align --- hierarchical nanostructures --- ZnO nanorod/NiO nanosheet --- photon extraction efficiency --- photonic emitter --- wideband --- HEMT --- power amplifier --- jammer system --- GaN 5G --- high electron mobility transistors (HEMT) --- new radio --- RF front-end --- AESA radars --- transmittance --- distortions --- optimization --- GaN-on-GaN --- schottky barrier diodes --- high-energy α-particle detection --- low voltage --- thick depletion width detectors --- n/a


Book
Wide Bandgap Based Devices : Design, Fabrication and Applications
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Emerging wide bandgap (WBG) semiconductors hold the potential to advance the global industry in the same way that, more than 50 years ago, the invention of the silicon (Si) chip enabled the modern computer era. SiC- and GaN-based devices are starting to become more commercially available. Smaller, faster, and more efficient than their counterpart Si-based components, these WBG devices also offer greater expected reliability in tougher operating conditions. Furthermore, in this frame, a new class of microelectronic-grade semiconducting materials that have an even larger bandgap than the previously established wide bandgap semiconductors, such as GaN and SiC, have been created, and are thus referred to as “ultra-wide bandgap” materials. These materials, which include AlGaN, AlN, diamond, Ga2O3, and BN, offer theoretically superior properties, including a higher critical breakdown field, higher temperature operation, and potentially higher radiation tolerance. These attributes, in turn, make it possible to use revolutionary new devices for extreme environments, such as high-efficiency power transistors, because of the improved Baliga figure of merit, ultra-high voltage pulsed power switches, high-efficiency UV-LEDs, and electronics. This Special Issue aims to collect high quality research papers, short communications, and review articles that focus on wide bandgap device design, fabrication, and advanced characterization. The Special Issue will also publish selected papers from the 43rd Workshop on Compound Semiconductor Devices and Integrated Circuits, held in France (WOCSDICE 2019), which brings together scientists and engineers working in the area of III–V, and other compound semiconductor devices and integrated circuits.

Keywords

Technology: general issues --- GaN --- high-electron-mobility transistor (HEMT) --- ultra-wide band gap --- GaN-based vertical-cavity surface-emitting laser (VCSEL) --- composition-graded AlxGa1−xN electron blocking layer (EBL) --- electron leakage --- GaN laser diode --- distributed feedback (DFB) --- surface gratings --- sidewall gratings --- AlGaN/GaN --- proton irradiation --- time-dependent dielectric breakdown (TDDB) --- reliability --- normally off --- power cycle test --- SiC micro-heater chip --- direct bonded copper (DBC) substrate --- Ag sinter paste --- wide band-gap (WBG) --- thermal resistance --- amorphous InGaZnO --- thin-film transistor --- nitrogen-doping --- buried-channel --- stability --- 4H-SiC --- turn-off loss --- ON-state voltage --- breakdown voltage (BV) --- IGBT --- wide-bandgap semiconductor --- high electron mobility transistors --- vertical gate structure --- normally-off operation --- gallium nitride --- asymmetric multiple quantum wells --- barrier thickness --- InGaN laser diodes --- optical absorption loss --- electron leakage current --- wide band gap semiconductors --- numerical simulation --- terahertz Gunn diode --- grooved-anode diode --- Gallium nitride (GaN) high-electron-mobility transistors (HEMTs) --- vertical breakdown voltage --- buffer trapping effect --- gallium nitride (GaN) --- power switching device --- active power filter (APF) --- power quality (PQ) --- metal-insulator-semiconductor high-electron-mobility transistor (MIS-HEMT) --- recessed gate --- double barrier --- high-electron-mobility transistors --- copper metallization --- millimeter wave --- wide bandgap semiconductors --- flexible devices --- silver nanoring --- silver nanowire --- polyol method --- cosolvent --- tungsten trioxide film --- spin coating --- optical band gap --- morphology --- electrochromism --- self-align --- hierarchical nanostructures --- ZnO nanorod/NiO nanosheet --- photon extraction efficiency --- photonic emitter --- wideband --- HEMT --- power amplifier --- jammer system --- GaN 5G --- high electron mobility transistors (HEMT) --- new radio --- RF front-end --- AESA radars --- transmittance --- distortions --- optimization --- GaN-on-GaN --- schottky barrier diodes --- high-energy α-particle detection --- low voltage --- thick depletion width detectors


Book
Latest Advances in Electrothermal Models
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is devoted to the latest advances in the area of electrothermal modelling of electronic components and networks. It contains eight sections by different teams of authors. These sections contain the results of: (a) electro-thermal simulations of SiC power MOSFETs using a SPICE-like simulation program; (b) modelling thermal properties of inductors taking into account the influence of the core volume on the efficiency of heat removal; (c) investigations into the problem of inserting a temperature sensor in the neighbourhood of a chip to monitor its junction temperature; (d) computations of the internal temperature of power LEDs situated in modules containing multiple-power LEDs, taking into account both self-heating in each power LED and mutual thermal couplings between each diode; (e) analyses of DC-DC converters using the electrothermal averaged model of the diode–transistor switch, including an IGBT and a rapid-switching diode; (f) electrothermal modelling of SiC power BJTs; (g) analysis of the efficiency of selected algorithms used for solving heat transfer problems at nanoscale; (h) analysis related to thermal simulation of the test structure dedicated to heat-diffusion investigation at the nanoscale.


Book
Latest Advances in Electrothermal Models
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is devoted to the latest advances in the area of electrothermal modelling of electronic components and networks. It contains eight sections by different teams of authors. These sections contain the results of: (a) electro-thermal simulations of SiC power MOSFETs using a SPICE-like simulation program; (b) modelling thermal properties of inductors taking into account the influence of the core volume on the efficiency of heat removal; (c) investigations into the problem of inserting a temperature sensor in the neighbourhood of a chip to monitor its junction temperature; (d) computations of the internal temperature of power LEDs situated in modules containing multiple-power LEDs, taking into account both self-heating in each power LED and mutual thermal couplings between each diode; (e) analyses of DC-DC converters using the electrothermal averaged model of the diode–transistor switch, including an IGBT and a rapid-switching diode; (f) electrothermal modelling of SiC power BJTs; (g) analysis of the efficiency of selected algorithms used for solving heat transfer problems at nanoscale; (h) analysis related to thermal simulation of the test structure dedicated to heat-diffusion investigation at the nanoscale.


Book
Latest Advances in Electrothermal Models
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is devoted to the latest advances in the area of electrothermal modelling of electronic components and networks. It contains eight sections by different teams of authors. These sections contain the results of: (a) electro-thermal simulations of SiC power MOSFETs using a SPICE-like simulation program; (b) modelling thermal properties of inductors taking into account the influence of the core volume on the efficiency of heat removal; (c) investigations into the problem of inserting a temperature sensor in the neighbourhood of a chip to monitor its junction temperature; (d) computations of the internal temperature of power LEDs situated in modules containing multiple-power LEDs, taking into account both self-heating in each power LED and mutual thermal couplings between each diode; (e) analyses of DC-DC converters using the electrothermal averaged model of the diode–transistor switch, including an IGBT and a rapid-switching diode; (f) electrothermal modelling of SiC power BJTs; (g) analysis of the efficiency of selected algorithms used for solving heat transfer problems at nanoscale; (h) analysis related to thermal simulation of the test structure dedicated to heat-diffusion investigation at the nanoscale.


Book
Carbon-Based Nanomaterials for (Bio)Sensors Development
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Carbon-based nanomaterials have been increasingly used in sensors and biosensors design due to their advantageous intrinsic properties, which include, but are not limited to, high electrical and thermal conductivity, chemical stability, optical properties, large specific surface, biocompatibility, and easy functionalization. The most commonly applied carbonaceous nanomaterials are carbon nanotubes (single- or multi-walled nanotubes) and graphene, but promising data have been also reported for (bio)sensors based on carbon quantum dots and nanocomposites, among others. The incorporation of carbon-based nanomaterials, independent of the detection scheme and developed platform type (optical, chemical, and biological, etc.), has a major beneficial effect on the (bio)sensor sensitivity, specificity, and overall performance. As a consequence, carbon-based nanomaterials have been promoting a revolution in the field of (bio)sensors with the development of increasingly sensitive devices. This Special Issue presents original research data and review articles that focus on (experimental or theoretical) advances, challenges, and outlooks concerning the preparation, characterization, and application of carbon-based nanomaterials for (bio)sensor development.

Listing 1 - 10 of 15 << page
of 2
>>
Sort by