Listing 1 - 10 of 15 | << page >> |
Sort by
|
Choose an application
In the last few years, the leading semiconductor industries have introduced multi-gate non-planar transistors into their core business. These are being applied in memories and in logical integrated circuits to achieve better integration on the chip, increased performance, and reduced energy consumption. Intense research is underway to develop these devices further and to address their limitations, in order to continue transistor scaling while further improving performance. This Special Issue looks at recent developments in the field of nanowire field-effect transistors (NW-FETs), covering different aspects of the technology, physics, and modelling of these nanoscale devices.
History of engineering & technology --- random dopant --- drift-diffusion --- variability --- device simulation --- nanodevice --- screening --- Coulomb interaction --- III-V --- TASE --- MOSFETs --- Integration --- nanowire field-effect transistors --- silicon nanomaterials --- charge transport --- one-dimensional multi-subband scattering models --- Kubo–Greenwood formalism --- schrödinger-poisson solvers --- DC and AC characteristic fluctuations --- gate-all-around --- nanowire --- work function fluctuation --- aspect ratio of channel cross-section --- timing fluctuation --- noise margin fluctuation --- power fluctuation --- CMOS circuit --- statistical device simulation --- variability effects --- Monte Carlo --- Schrödinger based quantum corrections --- quantum modeling --- nonequilibrium Green’s function --- nanowire transistor --- electron–phonon interaction --- phonon–phonon interaction --- self-consistent Born approximation --- lowest order approximation --- Padé approximants --- Richardson extrapolation --- ZnO --- field effect transistor --- conduction mechanism --- metal gate --- material properties --- fabrication --- modelling --- nanojunction --- constriction --- quantum electron transport --- quantum confinement --- dimensionality reduction --- stochastic Schrödinger equations --- geometric correlations --- silicon nanowires --- nano-transistors --- quantum transport --- hot electrons --- self-cooling --- nano-cooling --- thermoelectricity --- heat equation --- non-equilibrium Green functions --- power dissipation
Choose an application
In the last few years, the leading semiconductor industries have introduced multi-gate non-planar transistors into their core business. These are being applied in memories and in logical integrated circuits to achieve better integration on the chip, increased performance, and reduced energy consumption. Intense research is underway to develop these devices further and to address their limitations, in order to continue transistor scaling while further improving performance. This Special Issue looks at recent developments in the field of nanowire field-effect transistors (NW-FETs), covering different aspects of the technology, physics, and modelling of these nanoscale devices.
random dopant --- drift-diffusion --- variability --- device simulation --- nanodevice --- screening --- Coulomb interaction --- III-V --- TASE --- MOSFETs --- Integration --- nanowire field-effect transistors --- silicon nanomaterials --- charge transport --- one-dimensional multi-subband scattering models --- Kubo–Greenwood formalism --- schrödinger-poisson solvers --- DC and AC characteristic fluctuations --- gate-all-around --- nanowire --- work function fluctuation --- aspect ratio of channel cross-section --- timing fluctuation --- noise margin fluctuation --- power fluctuation --- CMOS circuit --- statistical device simulation --- variability effects --- Monte Carlo --- Schrödinger based quantum corrections --- quantum modeling --- nonequilibrium Green’s function --- nanowire transistor --- electron–phonon interaction --- phonon–phonon interaction --- self-consistent Born approximation --- lowest order approximation --- Padé approximants --- Richardson extrapolation --- ZnO --- field effect transistor --- conduction mechanism --- metal gate --- material properties --- fabrication --- modelling --- nanojunction --- constriction --- quantum electron transport --- quantum confinement --- dimensionality reduction --- stochastic Schrödinger equations --- geometric correlations --- silicon nanowires --- nano-transistors --- quantum transport --- hot electrons --- self-cooling --- nano-cooling --- thermoelectricity --- heat equation --- non-equilibrium Green functions --- power dissipation
Choose an application
In the last few years, the leading semiconductor industries have introduced multi-gate non-planar transistors into their core business. These are being applied in memories and in logical integrated circuits to achieve better integration on the chip, increased performance, and reduced energy consumption. Intense research is underway to develop these devices further and to address their limitations, in order to continue transistor scaling while further improving performance. This Special Issue looks at recent developments in the field of nanowire field-effect transistors (NW-FETs), covering different aspects of the technology, physics, and modelling of these nanoscale devices.
History of engineering & technology --- random dopant --- drift-diffusion --- variability --- device simulation --- nanodevice --- screening --- Coulomb interaction --- III-V --- TASE --- MOSFETs --- Integration --- nanowire field-effect transistors --- silicon nanomaterials --- charge transport --- one-dimensional multi-subband scattering models --- Kubo–Greenwood formalism --- schrödinger-poisson solvers --- DC and AC characteristic fluctuations --- gate-all-around --- nanowire --- work function fluctuation --- aspect ratio of channel cross-section --- timing fluctuation --- noise margin fluctuation --- power fluctuation --- CMOS circuit --- statistical device simulation --- variability effects --- Monte Carlo --- Schrödinger based quantum corrections --- quantum modeling --- nonequilibrium Green’s function --- nanowire transistor --- electron–phonon interaction --- phonon–phonon interaction --- self-consistent Born approximation --- lowest order approximation --- Padé approximants --- Richardson extrapolation --- ZnO --- field effect transistor --- conduction mechanism --- metal gate --- material properties --- fabrication --- modelling --- nanojunction --- constriction --- quantum electron transport --- quantum confinement --- dimensionality reduction --- stochastic Schrödinger equations --- geometric correlations --- silicon nanowires --- nano-transistors --- quantum transport --- hot electrons --- self-cooling --- nano-cooling --- thermoelectricity --- heat equation --- non-equilibrium Green functions --- power dissipation
Choose an application
Emerging wide bandgap (WBG) semiconductors hold the potential to advance the global industry in the same way that, more than 50 years ago, the invention of the silicon (Si) chip enabled the modern computer era. SiC- and GaN-based devices are starting to become more commercially available. Smaller, faster, and more efficient than their counterpart Si-based components, these WBG devices also offer greater expected reliability in tougher operating conditions. Furthermore, in this frame, a new class of microelectronic-grade semiconducting materials that have an even larger bandgap than the previously established wide bandgap semiconductors, such as GaN and SiC, have been created, and are thus referred to as “ultra-wide bandgap” materials. These materials, which include AlGaN, AlN, diamond, Ga2O3, and BN, offer theoretically superior properties, including a higher critical breakdown field, higher temperature operation, and potentially higher radiation tolerance. These attributes, in turn, make it possible to use revolutionary new devices for extreme environments, such as high-efficiency power transistors, because of the improved Baliga figure of merit, ultra-high voltage pulsed power switches, high-efficiency UV-LEDs, and electronics. This Special Issue aims to collect high quality research papers, short communications, and review articles that focus on wide bandgap device design, fabrication, and advanced characterization. The Special Issue will also publish selected papers from the 43rd Workshop on Compound Semiconductor Devices and Integrated Circuits, held in France (WOCSDICE 2019), which brings together scientists and engineers working in the area of III–V, and other compound semiconductor devices and integrated circuits.
Technology: general issues --- GaN --- high-electron-mobility transistor (HEMT) --- ultra-wide band gap --- GaN-based vertical-cavity surface-emitting laser (VCSEL) --- composition-graded AlxGa1−xN electron blocking layer (EBL) --- electron leakage --- GaN laser diode --- distributed feedback (DFB) --- surface gratings --- sidewall gratings --- AlGaN/GaN --- proton irradiation --- time-dependent dielectric breakdown (TDDB) --- reliability --- normally off --- power cycle test --- SiC micro-heater chip --- direct bonded copper (DBC) substrate --- Ag sinter paste --- wide band-gap (WBG) --- thermal resistance --- amorphous InGaZnO --- thin-film transistor --- nitrogen-doping --- buried-channel --- stability --- 4H-SiC --- turn-off loss --- ON-state voltage --- breakdown voltage (BV) --- IGBT --- wide-bandgap semiconductor --- high electron mobility transistors --- vertical gate structure --- normally-off operation --- gallium nitride --- asymmetric multiple quantum wells --- barrier thickness --- InGaN laser diodes --- optical absorption loss --- electron leakage current --- wide band gap semiconductors --- numerical simulation --- terahertz Gunn diode --- grooved-anode diode --- Gallium nitride (GaN) high-electron-mobility transistors (HEMTs) --- vertical breakdown voltage --- buffer trapping effect --- gallium nitride (GaN) --- power switching device --- active power filter (APF) --- power quality (PQ) --- metal-insulator-semiconductor high-electron-mobility transistor (MIS-HEMT) --- recessed gate --- double barrier --- high-electron-mobility transistors --- copper metallization --- millimeter wave --- wide bandgap semiconductors --- flexible devices --- silver nanoring --- silver nanowire --- polyol method --- cosolvent --- tungsten trioxide film --- spin coating --- optical band gap --- morphology --- electrochromism --- self-align --- hierarchical nanostructures --- ZnO nanorod/NiO nanosheet --- photon extraction efficiency --- photonic emitter --- wideband --- HEMT --- power amplifier --- jammer system --- GaN 5G --- high electron mobility transistors (HEMT) --- new radio --- RF front-end --- AESA radars --- transmittance --- distortions --- optimization --- GaN-on-GaN --- schottky barrier diodes --- high-energy α-particle detection --- low voltage --- thick depletion width detectors --- n/a
Choose an application
Emerging wide bandgap (WBG) semiconductors hold the potential to advance the global industry in the same way that, more than 50 years ago, the invention of the silicon (Si) chip enabled the modern computer era. SiC- and GaN-based devices are starting to become more commercially available. Smaller, faster, and more efficient than their counterpart Si-based components, these WBG devices also offer greater expected reliability in tougher operating conditions. Furthermore, in this frame, a new class of microelectronic-grade semiconducting materials that have an even larger bandgap than the previously established wide bandgap semiconductors, such as GaN and SiC, have been created, and are thus referred to as “ultra-wide bandgap” materials. These materials, which include AlGaN, AlN, diamond, Ga2O3, and BN, offer theoretically superior properties, including a higher critical breakdown field, higher temperature operation, and potentially higher radiation tolerance. These attributes, in turn, make it possible to use revolutionary new devices for extreme environments, such as high-efficiency power transistors, because of the improved Baliga figure of merit, ultra-high voltage pulsed power switches, high-efficiency UV-LEDs, and electronics. This Special Issue aims to collect high quality research papers, short communications, and review articles that focus on wide bandgap device design, fabrication, and advanced characterization. The Special Issue will also publish selected papers from the 43rd Workshop on Compound Semiconductor Devices and Integrated Circuits, held in France (WOCSDICE 2019), which brings together scientists and engineers working in the area of III–V, and other compound semiconductor devices and integrated circuits.
GaN --- high-electron-mobility transistor (HEMT) --- ultra-wide band gap --- GaN-based vertical-cavity surface-emitting laser (VCSEL) --- composition-graded AlxGa1−xN electron blocking layer (EBL) --- electron leakage --- GaN laser diode --- distributed feedback (DFB) --- surface gratings --- sidewall gratings --- AlGaN/GaN --- proton irradiation --- time-dependent dielectric breakdown (TDDB) --- reliability --- normally off --- power cycle test --- SiC micro-heater chip --- direct bonded copper (DBC) substrate --- Ag sinter paste --- wide band-gap (WBG) --- thermal resistance --- amorphous InGaZnO --- thin-film transistor --- nitrogen-doping --- buried-channel --- stability --- 4H-SiC --- turn-off loss --- ON-state voltage --- breakdown voltage (BV) --- IGBT --- wide-bandgap semiconductor --- high electron mobility transistors --- vertical gate structure --- normally-off operation --- gallium nitride --- asymmetric multiple quantum wells --- barrier thickness --- InGaN laser diodes --- optical absorption loss --- electron leakage current --- wide band gap semiconductors --- numerical simulation --- terahertz Gunn diode --- grooved-anode diode --- Gallium nitride (GaN) high-electron-mobility transistors (HEMTs) --- vertical breakdown voltage --- buffer trapping effect --- gallium nitride (GaN) --- power switching device --- active power filter (APF) --- power quality (PQ) --- metal-insulator-semiconductor high-electron-mobility transistor (MIS-HEMT) --- recessed gate --- double barrier --- high-electron-mobility transistors --- copper metallization --- millimeter wave --- wide bandgap semiconductors --- flexible devices --- silver nanoring --- silver nanowire --- polyol method --- cosolvent --- tungsten trioxide film --- spin coating --- optical band gap --- morphology --- electrochromism --- self-align --- hierarchical nanostructures --- ZnO nanorod/NiO nanosheet --- photon extraction efficiency --- photonic emitter --- wideband --- HEMT --- power amplifier --- jammer system --- GaN 5G --- high electron mobility transistors (HEMT) --- new radio --- RF front-end --- AESA radars --- transmittance --- distortions --- optimization --- GaN-on-GaN --- schottky barrier diodes --- high-energy α-particle detection --- low voltage --- thick depletion width detectors --- n/a
Choose an application
Emerging wide bandgap (WBG) semiconductors hold the potential to advance the global industry in the same way that, more than 50 years ago, the invention of the silicon (Si) chip enabled the modern computer era. SiC- and GaN-based devices are starting to become more commercially available. Smaller, faster, and more efficient than their counterpart Si-based components, these WBG devices also offer greater expected reliability in tougher operating conditions. Furthermore, in this frame, a new class of microelectronic-grade semiconducting materials that have an even larger bandgap than the previously established wide bandgap semiconductors, such as GaN and SiC, have been created, and are thus referred to as “ultra-wide bandgap” materials. These materials, which include AlGaN, AlN, diamond, Ga2O3, and BN, offer theoretically superior properties, including a higher critical breakdown field, higher temperature operation, and potentially higher radiation tolerance. These attributes, in turn, make it possible to use revolutionary new devices for extreme environments, such as high-efficiency power transistors, because of the improved Baliga figure of merit, ultra-high voltage pulsed power switches, high-efficiency UV-LEDs, and electronics. This Special Issue aims to collect high quality research papers, short communications, and review articles that focus on wide bandgap device design, fabrication, and advanced characterization. The Special Issue will also publish selected papers from the 43rd Workshop on Compound Semiconductor Devices and Integrated Circuits, held in France (WOCSDICE 2019), which brings together scientists and engineers working in the area of III–V, and other compound semiconductor devices and integrated circuits.
Technology: general issues --- GaN --- high-electron-mobility transistor (HEMT) --- ultra-wide band gap --- GaN-based vertical-cavity surface-emitting laser (VCSEL) --- composition-graded AlxGa1−xN electron blocking layer (EBL) --- electron leakage --- GaN laser diode --- distributed feedback (DFB) --- surface gratings --- sidewall gratings --- AlGaN/GaN --- proton irradiation --- time-dependent dielectric breakdown (TDDB) --- reliability --- normally off --- power cycle test --- SiC micro-heater chip --- direct bonded copper (DBC) substrate --- Ag sinter paste --- wide band-gap (WBG) --- thermal resistance --- amorphous InGaZnO --- thin-film transistor --- nitrogen-doping --- buried-channel --- stability --- 4H-SiC --- turn-off loss --- ON-state voltage --- breakdown voltage (BV) --- IGBT --- wide-bandgap semiconductor --- high electron mobility transistors --- vertical gate structure --- normally-off operation --- gallium nitride --- asymmetric multiple quantum wells --- barrier thickness --- InGaN laser diodes --- optical absorption loss --- electron leakage current --- wide band gap semiconductors --- numerical simulation --- terahertz Gunn diode --- grooved-anode diode --- Gallium nitride (GaN) high-electron-mobility transistors (HEMTs) --- vertical breakdown voltage --- buffer trapping effect --- gallium nitride (GaN) --- power switching device --- active power filter (APF) --- power quality (PQ) --- metal-insulator-semiconductor high-electron-mobility transistor (MIS-HEMT) --- recessed gate --- double barrier --- high-electron-mobility transistors --- copper metallization --- millimeter wave --- wide bandgap semiconductors --- flexible devices --- silver nanoring --- silver nanowire --- polyol method --- cosolvent --- tungsten trioxide film --- spin coating --- optical band gap --- morphology --- electrochromism --- self-align --- hierarchical nanostructures --- ZnO nanorod/NiO nanosheet --- photon extraction efficiency --- photonic emitter --- wideband --- HEMT --- power amplifier --- jammer system --- GaN 5G --- high electron mobility transistors (HEMT) --- new radio --- RF front-end --- AESA radars --- transmittance --- distortions --- optimization --- GaN-on-GaN --- schottky barrier diodes --- high-energy α-particle detection --- low voltage --- thick depletion width detectors
Choose an application
This book is devoted to the latest advances in the area of electrothermal modelling of electronic components and networks. It contains eight sections by different teams of authors. These sections contain the results of: (a) electro-thermal simulations of SiC power MOSFETs using a SPICE-like simulation program; (b) modelling thermal properties of inductors taking into account the influence of the core volume on the efficiency of heat removal; (c) investigations into the problem of inserting a temperature sensor in the neighbourhood of a chip to monitor its junction temperature; (d) computations of the internal temperature of power LEDs situated in modules containing multiple-power LEDs, taking into account both self-heating in each power LED and mutual thermal couplings between each diode; (e) analyses of DC-DC converters using the electrothermal averaged model of the diode–transistor switch, including an IGBT and a rapid-switching diode; (f) electrothermal modelling of SiC power BJTs; (g) analysis of the efficiency of selected algorithms used for solving heat transfer problems at nanoscale; (h) analysis related to thermal simulation of the test structure dedicated to heat-diffusion investigation at the nanoscale.
History of engineering & technology --- Dual-Phase-Lag heat transfer model --- thermal simulation algorithm --- thermal measurements --- Finite Difference Method scheme --- Grünwald–Letnikov fractional derivative --- Krylov subspace-based model order reduction --- algorithm efficiency analysis --- relative error analysis --- algorithm convergence analysis --- computational complexity analysis --- finite difference method scheme --- BJT --- modelling --- self-heating --- silicon carbide --- SPICE --- IGBT --- DC–DC converter --- electrothermal model --- averaged model --- thermal phenomena --- diode–transistor switch --- power electronics --- multi-LED lighting modules --- device thermal coupling --- compact thermal models --- temperature sensors --- microprocessor --- throughput improvement --- inductors --- ferromagnetic cores --- thermal model --- transient thermal impedance --- thermal resistance --- electrothermal (ET) simulation --- finite-element method (FEM) --- model-order reduction (MOR) --- multicellular power MOSFET --- silicon carbide (SiC)
Choose an application
This book is devoted to the latest advances in the area of electrothermal modelling of electronic components and networks. It contains eight sections by different teams of authors. These sections contain the results of: (a) electro-thermal simulations of SiC power MOSFETs using a SPICE-like simulation program; (b) modelling thermal properties of inductors taking into account the influence of the core volume on the efficiency of heat removal; (c) investigations into the problem of inserting a temperature sensor in the neighbourhood of a chip to monitor its junction temperature; (d) computations of the internal temperature of power LEDs situated in modules containing multiple-power LEDs, taking into account both self-heating in each power LED and mutual thermal couplings between each diode; (e) analyses of DC-DC converters using the electrothermal averaged model of the diode–transistor switch, including an IGBT and a rapid-switching diode; (f) electrothermal modelling of SiC power BJTs; (g) analysis of the efficiency of selected algorithms used for solving heat transfer problems at nanoscale; (h) analysis related to thermal simulation of the test structure dedicated to heat-diffusion investigation at the nanoscale.
Dual-Phase-Lag heat transfer model --- thermal simulation algorithm --- thermal measurements --- Finite Difference Method scheme --- Grünwald–Letnikov fractional derivative --- Krylov subspace-based model order reduction --- algorithm efficiency analysis --- relative error analysis --- algorithm convergence analysis --- computational complexity analysis --- finite difference method scheme --- BJT --- modelling --- self-heating --- silicon carbide --- SPICE --- IGBT --- DC–DC converter --- electrothermal model --- averaged model --- thermal phenomena --- diode–transistor switch --- power electronics --- multi-LED lighting modules --- device thermal coupling --- compact thermal models --- temperature sensors --- microprocessor --- throughput improvement --- inductors --- ferromagnetic cores --- thermal model --- transient thermal impedance --- thermal resistance --- electrothermal (ET) simulation --- finite-element method (FEM) --- model-order reduction (MOR) --- multicellular power MOSFET --- silicon carbide (SiC)
Choose an application
This book is devoted to the latest advances in the area of electrothermal modelling of electronic components and networks. It contains eight sections by different teams of authors. These sections contain the results of: (a) electro-thermal simulations of SiC power MOSFETs using a SPICE-like simulation program; (b) modelling thermal properties of inductors taking into account the influence of the core volume on the efficiency of heat removal; (c) investigations into the problem of inserting a temperature sensor in the neighbourhood of a chip to monitor its junction temperature; (d) computations of the internal temperature of power LEDs situated in modules containing multiple-power LEDs, taking into account both self-heating in each power LED and mutual thermal couplings between each diode; (e) analyses of DC-DC converters using the electrothermal averaged model of the diode–transistor switch, including an IGBT and a rapid-switching diode; (f) electrothermal modelling of SiC power BJTs; (g) analysis of the efficiency of selected algorithms used for solving heat transfer problems at nanoscale; (h) analysis related to thermal simulation of the test structure dedicated to heat-diffusion investigation at the nanoscale.
History of engineering & technology --- Dual-Phase-Lag heat transfer model --- thermal simulation algorithm --- thermal measurements --- Finite Difference Method scheme --- Grünwald–Letnikov fractional derivative --- Krylov subspace-based model order reduction --- algorithm efficiency analysis --- relative error analysis --- algorithm convergence analysis --- computational complexity analysis --- finite difference method scheme --- BJT --- modelling --- self-heating --- silicon carbide --- SPICE --- IGBT --- DC–DC converter --- electrothermal model --- averaged model --- thermal phenomena --- diode–transistor switch --- power electronics --- multi-LED lighting modules --- device thermal coupling --- compact thermal models --- temperature sensors --- microprocessor --- throughput improvement --- inductors --- ferromagnetic cores --- thermal model --- transient thermal impedance --- thermal resistance --- electrothermal (ET) simulation --- finite-element method (FEM) --- model-order reduction (MOR) --- multicellular power MOSFET --- silicon carbide (SiC)
Choose an application
Carbon-based nanomaterials have been increasingly used in sensors and biosensors design due to their advantageous intrinsic properties, which include, but are not limited to, high electrical and thermal conductivity, chemical stability, optical properties, large specific surface, biocompatibility, and easy functionalization. The most commonly applied carbonaceous nanomaterials are carbon nanotubes (single- or multi-walled nanotubes) and graphene, but promising data have been also reported for (bio)sensors based on carbon quantum dots and nanocomposites, among others. The incorporation of carbon-based nanomaterials, independent of the detection scheme and developed platform type (optical, chemical, and biological, etc.), has a major beneficial effect on the (bio)sensor sensitivity, specificity, and overall performance. As a consequence, carbon-based nanomaterials have been promoting a revolution in the field of (bio)sensors with the development of increasingly sensitive devices. This Special Issue presents original research data and review articles that focus on (experimental or theoretical) advances, challenges, and outlooks concerning the preparation, characterization, and application of carbon-based nanomaterials for (bio)sensor development.
Technology: general issues --- dopamine --- uric acid --- MnO2 nanoflowers --- N-doped reduced graphene oxide --- voltammetric sensor --- 3D printing --- biomimetic sensor --- flexible electronics --- graphene --- PDMS --- gauge factor --- carbon nanofibers --- nanoparticles --- electrospinning --- hybrid nanomaterials --- sensor --- carbon dots --- dipicolinic acid --- Tb3+ --- schizochytrium --- ratiometric fluorescence nanoprobe --- carbon-based nanomaterials --- chemo- and biosensor --- food safety --- field effect transistor --- graphene nanoribbon --- propane --- butane --- gas sensor --- detector --- oxygen --- humidity --- water --- nitrogen --- carbon dioxide --- surface-enhanced Raman scattering --- ultrathin gold films --- spectroscopic ellipsometry --- percolation threshold --- nano carbon black --- polydimethylsiloxane --- pressure sensors --- wearable electronics --- hemoglobin determination --- luminescence --- room temperature phosphorescence --- portable instrumentation --- sensors and biosensors --- carbon nanomaterials --- environment --- aquatic fauna --- waters --- carbon nanotubes --- zirconia nanoparticles --- Prussian blue --- electrochemical sensors --- metal organic framework --- active carbon --- heavy metal --- low-cost adsorbents --- lead sensor --- Cortaderia selloana --- non-covalent --- biosensor --- real-time --- nanocomposite --- π-π stacking --- drop-cast --- carbon-surfaces --- resistor --- GFET --- n/a
Listing 1 - 10 of 15 | << page >> |
Sort by
|