Narrow your search

Library

ULiège (4)

KU Leuven (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

VIVES (2)

FARO (1)

LUCA School of Arts (1)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2021 (6)

Listing 1 - 6 of 6
Sort by

Book
Key methods and concepts in condensed matter physics : Green's functions and real space renormalization group
Authors: ---
ISBN: 0750333944 0750333952 Year: 2021 Publisher: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book aims to present a concise introduction, for graduate students and researchers, to powerful techniques and important concepts in condensed matter physics. Key conceptual elements include the fluctuation-dissipation theorem, the theory of critical phenomena (both classical and quantum) and the renormalization group. The book focuses on the Green's functions method and the real space renormalization group (RG).


Book
Key methods and concepts in condensed matter physics : Green's functions and real space renormalization group
Author:
ISBN: 9780750333931 9780750333955 9780750333962 9780750333948 Year: 2021 Publisher: Bristol, UK : IOP Publishing,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book aims to present a concise introduction, for graduate students and researchers, to powerful techniques and important concepts in condensed matter physics. Key conceptual elements include the fluctuation-dissipation theorem, the theory of critical phenomena (both classical and quantum) and the renormalization group. The book focuses on the Green's functions method and the real space renormalization group (RG). The Green's function method has been used extensively to study a large variety of problems in physics. The authors present a generalized version of the Green's Function method that allows one to use perturbation theory including time dependent perturbations. This can be used to treat a variety of new fundamental problems in condensed matter, such as quantum and topological phase transitions. The real space renormalization group is a highly intuitive method to introduce main concepts in statistical mechanics and the theory of phase transitions. The book discusses the notion of scale invariance, stable and unstable fixed points, flow in parameter space, crossover and relevant and irrelevant perturbations. These will be illustrated with several examples. The book illustrates that the real space RG is very useful for treating problems such as percolation and localized magnetism as described, for example, by the Ising model.The book considers problems in both pure and disordered condensed matter systems and discusses the new effects introduced by the latter. The book presents the solutions of some fundamental problems in condensed matter physics using the methods and tools introduced in the chapters. The calculations will be carried out with step-by-step details to help readers master the techniques. Finally, the book explores how the Green's functions and real space RG techniques detailed can be used to study modern problems arising from the consideration of topological aspects of condensed matter.


Book
Statics and influence functions : from a modern perspective.
Authors: ---
ISBN: 3030558894 3030558886 Year: 2021 Publisher: Springer International Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

This extended and revised second edition is intended for engineering students and researchers working with finite element methods in structural and mechanical analysis. Discussing numerical structural analysis from first mechanical and mathematical principles, it establishes the central role of influence functions (Green's functions) in linear computational mechanics. The main features of the book are mentioned below. · Introducing Green's first and second identity as the core theorems of statics and mechanics. Formulation of the variational and energy principles of mechanics with an emphasis on the computational aspects and on the qualitative features of variational solutions. · Derivation of influence functions from duality principles, the distinction between weak and strong influence functions, the difference between monopoles and dipoles and how amputated dipoles lead to singularities, and how singularities on the boundary pollute the solution inside the domain - an unavoidable effect in 2-D and 3-D. · A detailed discussion of the various features of the finite element method and the key role of the notion of “shake-equivalence" as originally introduced by Turner et alt. Establishing that in linear finite element analysis the accuracy depends on the accuracy of the influence functions. Introducing Betti extended as a core theorem of finite element analysis. · A systematic treatment of the role which Green's functions play in reanalysis, sensitivity analysis, parameter identification and in optimization. Explaining why averaging material parameters succeeds and how local stiffness changes can be identified with the action of equilibrium forces f+. · Presenting a new technique, one-click reanalysis, which allows to make modifications to a structure by clicking on single elements and seeing directly the new shape, bypassing the need to solve the modified system. · Four programs for the solution of the Poisson equation, 2-D elasticity, plate-bending problems and planar frames are offered for download in this second edition. These are all-purpose programs but with a particular emphasis on influence functions. The frame program also demonstrates one-click reanalysis.


Book
Quantum Transport in Mesoscopic Systems
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mesoscopic physics deals with systems larger than single atoms but small enough to retain their quantum properties. The possibility to create and manipulate conductors of the nanometer scale has given birth to a set of phenomena that have revolutionized physics: quantum Hall effects, persistent currents, weak localization, Coulomb blockade, etc. This Special Issue tackles the latest developments in the field. Contributors discuss time-dependent transport, quantum pumping, nanoscale heat engines and motors, molecular junctions, electron–electron correlations in confined systems, quantum thermo-electrics and current fluctuations. The works included herein represent an up-to-date account of exciting research with a broad impact in both fundamental and applied topics.

Keywords

Technology: general issues --- quantum transport --- quantum interference --- shot noise --- persistent current --- mesoscale and nanoscale physics --- Complementary Metal Oxide Semiconductor (CMOS) technology --- electron quantum optics --- photo-assisted noise --- charge and heat fluctuations --- time-dependent transport --- electron–photon coupling --- open quantum systems --- phonon transport --- nanostructured materials --- green’s functions --- density-functional tight binding --- Landauer approach, time-dependent transport --- graphene nanoribbons --- nonequilibrium Green’s function --- electronic transport --- thermal transport --- strongly correlated systems --- Landauer-Büttiker formalism --- Boltzmann transport equation --- time-dependent density functional theory --- electron–phonon coupling --- molecular junctions --- thermoelectric properties --- electron–vibration interactions --- electron–electron interactions --- thermoelectricity --- heat engines --- mesoscopic physics --- fluctuations --- thermodynamic uncertainty relations --- quantum thermodynamics --- steady-state dynamics --- nonlinear transport --- adiabatic quantum motors --- adiabatic quantum pumps --- quantum heat engines --- quantum refrigerators --- transport through quantum dots --- spin pump --- spin-orbit interaction --- quantum adiabatic pump --- interferometer --- geometric phase --- nonadiabaticity --- quantum heat pumping --- spin pumping --- relaxation --- time evolution --- quantum information --- entropy production --- Renyi entropy --- superconducting proximity effect --- Kondo effect --- spin polarization --- Anreev reflection --- conditional states --- conditional wavefunction --- Markovian and Non-Markovian dynamics --- stochastic Schrödinger equation --- quantum electron transport --- quantum dots --- fluctuation–dissipation theorem --- Onsager relations --- dynamics of strongly correlated quantum systems --- quantum capacitor --- local fermi liquids --- kondo effect --- coulomb blockade --- mesoscopic systems --- nanophysics --- quantum noise --- quantum pumping --- thermoelectrics --- heat transport --- quantum transport --- quantum interference --- shot noise --- persistent current --- mesoscale and nanoscale physics --- Complementary Metal Oxide Semiconductor (CMOS) technology --- electron quantum optics --- photo-assisted noise --- charge and heat fluctuations --- time-dependent transport --- electron–photon coupling --- open quantum systems --- phonon transport --- nanostructured materials --- green’s functions --- density-functional tight binding --- Landauer approach, time-dependent transport --- graphene nanoribbons --- nonequilibrium Green’s function --- electronic transport --- thermal transport --- strongly correlated systems --- Landauer-Büttiker formalism --- Boltzmann transport equation --- time-dependent density functional theory --- electron–phonon coupling --- molecular junctions --- thermoelectric properties --- electron–vibration interactions --- electron–electron interactions --- thermoelectricity --- heat engines --- mesoscopic physics --- fluctuations --- thermodynamic uncertainty relations --- quantum thermodynamics --- steady-state dynamics --- nonlinear transport --- adiabatic quantum motors --- adiabatic quantum pumps --- quantum heat engines --- quantum refrigerators --- transport through quantum dots --- spin pump --- spin-orbit interaction --- quantum adiabatic pump --- interferometer --- geometric phase --- nonadiabaticity --- quantum heat pumping --- spin pumping --- relaxation --- time evolution --- quantum information --- entropy production --- Renyi entropy --- superconducting proximity effect --- Kondo effect --- spin polarization --- Anreev reflection --- conditional states --- conditional wavefunction --- Markovian and Non-Markovian dynamics --- stochastic Schrödinger equation --- quantum electron transport --- quantum dots --- fluctuation–dissipation theorem --- Onsager relations --- dynamics of strongly correlated quantum systems --- quantum capacitor --- local fermi liquids --- kondo effect --- coulomb blockade --- mesoscopic systems --- nanophysics --- quantum noise --- quantum pumping --- thermoelectrics --- heat transport


Book
Quantum Transport in Mesoscopic Systems
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mesoscopic physics deals with systems larger than single atoms but small enough to retain their quantum properties. The possibility to create and manipulate conductors of the nanometer scale has given birth to a set of phenomena that have revolutionized physics: quantum Hall effects, persistent currents, weak localization, Coulomb blockade, etc. This Special Issue tackles the latest developments in the field. Contributors discuss time-dependent transport, quantum pumping, nanoscale heat engines and motors, molecular junctions, electron–electron correlations in confined systems, quantum thermo-electrics and current fluctuations. The works included herein represent an up-to-date account of exciting research with a broad impact in both fundamental and applied topics.

Keywords

Technology: general issues --- quantum transport --- quantum interference --- shot noise --- persistent current --- mesoscale and nanoscale physics --- Complementary Metal Oxide Semiconductor (CMOS) technology --- electron quantum optics --- photo-assisted noise --- charge and heat fluctuations --- time-dependent transport --- electron–photon coupling --- open quantum systems --- phonon transport --- nanostructured materials --- green’s functions --- density-functional tight binding --- Landauer approach, time-dependent transport --- graphene nanoribbons --- nonequilibrium Green’s function --- electronic transport --- thermal transport --- strongly correlated systems --- Landauer-Büttiker formalism --- Boltzmann transport equation --- time-dependent density functional theory --- electron–phonon coupling --- molecular junctions --- thermoelectric properties --- electron–vibration interactions --- electron–electron interactions --- thermoelectricity --- heat engines --- mesoscopic physics --- fluctuations --- thermodynamic uncertainty relations --- quantum thermodynamics --- steady-state dynamics --- nonlinear transport --- adiabatic quantum motors --- adiabatic quantum pumps --- quantum heat engines --- quantum refrigerators --- transport through quantum dots --- spin pump --- spin-orbit interaction --- quantum adiabatic pump --- interferometer --- geometric phase --- nonadiabaticity --- quantum heat pumping --- spin pumping --- relaxation --- time evolution --- quantum information --- entropy production --- Renyi entropy --- superconducting proximity effect --- Kondo effect --- spin polarization --- Anreev reflection --- conditional states --- conditional wavefunction --- Markovian and Non-Markovian dynamics --- stochastic Schrödinger equation --- quantum electron transport --- quantum dots --- fluctuation–dissipation theorem --- Onsager relations --- dynamics of strongly correlated quantum systems --- quantum capacitor --- local fermi liquids --- kondo effect --- coulomb blockade --- mesoscopic systems --- nanophysics --- quantum noise --- quantum pumping --- thermoelectrics --- heat transport


Book
Quantum Transport in Mesoscopic Systems
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mesoscopic physics deals with systems larger than single atoms but small enough to retain their quantum properties. The possibility to create and manipulate conductors of the nanometer scale has given birth to a set of phenomena that have revolutionized physics: quantum Hall effects, persistent currents, weak localization, Coulomb blockade, etc. This Special Issue tackles the latest developments in the field. Contributors discuss time-dependent transport, quantum pumping, nanoscale heat engines and motors, molecular junctions, electron–electron correlations in confined systems, quantum thermo-electrics and current fluctuations. The works included herein represent an up-to-date account of exciting research with a broad impact in both fundamental and applied topics.

Keywords

quantum transport --- quantum interference --- shot noise --- persistent current --- mesoscale and nanoscale physics --- Complementary Metal Oxide Semiconductor (CMOS) technology --- electron quantum optics --- photo-assisted noise --- charge and heat fluctuations --- time-dependent transport --- electron–photon coupling --- open quantum systems --- phonon transport --- nanostructured materials --- green’s functions --- density-functional tight binding --- Landauer approach, time-dependent transport --- graphene nanoribbons --- nonequilibrium Green’s function --- electronic transport --- thermal transport --- strongly correlated systems --- Landauer-Büttiker formalism --- Boltzmann transport equation --- time-dependent density functional theory --- electron–phonon coupling --- molecular junctions --- thermoelectric properties --- electron–vibration interactions --- electron–electron interactions --- thermoelectricity --- heat engines --- mesoscopic physics --- fluctuations --- thermodynamic uncertainty relations --- quantum thermodynamics --- steady-state dynamics --- nonlinear transport --- adiabatic quantum motors --- adiabatic quantum pumps --- quantum heat engines --- quantum refrigerators --- transport through quantum dots --- spin pump --- spin-orbit interaction --- quantum adiabatic pump --- interferometer --- geometric phase --- nonadiabaticity --- quantum heat pumping --- spin pumping --- relaxation --- time evolution --- quantum information --- entropy production --- Renyi entropy --- superconducting proximity effect --- Kondo effect --- spin polarization --- Anreev reflection --- conditional states --- conditional wavefunction --- Markovian and Non-Markovian dynamics --- stochastic Schrödinger equation --- quantum electron transport --- quantum dots --- fluctuation–dissipation theorem --- Onsager relations --- dynamics of strongly correlated quantum systems --- quantum capacitor --- local fermi liquids --- kondo effect --- coulomb blockade --- mesoscopic systems --- nanophysics --- quantum noise --- quantum pumping --- thermoelectrics --- heat transport

Listing 1 - 6 of 6
Sort by