Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Computational linguistics --- Automatic speech recognition. --- Mechanical speech recognizer --- Speech recognition, Automatic --- Pattern recognition systems --- Perceptrons --- Speech, Intelligibility of --- Speech perception --- Speech processing systems --- Automatic language processing --- Language and languages --- Language data processing --- Linguistics --- Natural language processing (Linguistics) --- Applied linguistics --- Cross-language information retrieval --- Mathematical linguistics --- Multilingual computing --- Data processing
Choose an application
Automatic speech recognition --- JavaScript (Computer program language) --- Internet programming. --- Speech processing systems --- Web applications --- Data processing. --- Computer programs. --- Development. --- Node.js. --- Applications, Web --- Applications, Web-based --- Web-based applications --- Weblications --- Application software --- Computational linguistics --- Electronic systems --- Information theory --- Modulation theory --- Oral communication --- Speech --- Telecommunication --- Singing voice synthesizers --- Computer programming --- Domain-specific programming languages --- Object-oriented programming languages --- Scripting languages (Computer science) --- Mechanical speech recognizer --- Speech recognition, Automatic --- Pattern recognition systems --- Perceptrons --- Speech, Intelligibility of --- Speech perception --- Node (Computer program)
Choose an application
Image techniques have been developed and implemented for various purposes, and image engineering (IE) is a rapidly evolving, integrated discipline comprising the study of all the different branches of image techniques, and encompassing mathematics, physics, biology, physiology, psychology, electrical engineering, computer science and automation. Advances in the field are also closely related to the development of telecommunications, biomedical engineering, remote sensing, surveying and mapping, as well as document processing and industrial applications. IE involves three related and partially overlapping groups of image techniques: image processing (IP) (in its narrow sense), image analysis (IA) and image understanding (IU), and the integration of these three groups makes the discipline of image engineering an important part of the modern information era. This is the first handbook on image engineering, and provides a well-structured, comprehensive overview of this new discipline. It also offers detailed information on the various image techniques. It is a valuable reference resource for R&D professional and undergraduate students involved in image-related activities.
Optical data processing. --- Machine learning. --- Multimedia information systems. --- Computer Imaging, Vision, Pattern Recognition and Graphics. --- Machine Learning. --- Multimedia Information Systems. --- Computer-based multimedia information systems --- Multimedia computing --- Multimedia information systems --- Multimedia knowledge systems --- Information storage and retrieval systems --- Learning, Machine --- Artificial intelligence --- Machine theory --- Optical computing --- Visual data processing --- Bionics --- Electronic data processing --- Integrated optics --- Photonics --- Computers --- Optical equipment --- Image processing --- Image analysis --- Optical pattern recognition --- Pictorial data processing --- Picture processing --- Processing, Image --- Imaging systems --- Optical data processing --- Pattern perception --- Perceptrons --- Visual discrimination --- Analysis of images --- Image interpretation --- Photographs --- Forensic sciences --- Inspection --- Computer vision. --- Multimedia systems. --- Digital techniques. --- Machine vision --- Vision, Computer --- Pattern recognition systems --- Digital image processing --- Digital electronics
Choose an application
As faster and more efficient numerical algorithms become available, the understanding of the physics and the mathematical foundation behind these new methods will play an increasingly important role. This Special Issue provides a platform for researchers from both academia and industry to present their novel computational methods that have engineering and physics applications.
Research & information: general --- Mathematics & science --- radial basis functions --- finite difference methods --- traveling waves --- non-uniform grids --- chaotic oscillator --- one-step method --- multi-step method --- computer arithmetic --- FPGA --- high strain rate impact --- modeling and simulation --- smoothed particle hydrodynamics --- finite element analysis --- hybrid nanofluid --- heat transfer --- non-isothermal --- shrinking surface --- MHD --- radiation --- multilayer perceptrons --- quaternion neural networks --- metaheuristic optimization --- genetic algorithms --- micropolar fluid --- constricted channel --- MHD pulsatile flow --- strouhal number --- flow pulsation parameter --- multiple integral finite volume method --- finite difference method --- Rosenau-KdV --- conservation --- solvability --- convergence --- transmission electron microscopy (TEM) --- convolutional neural networks (CNN) --- anomaly detection --- principal component analysis (PCA) --- machine learning --- deep learning --- neural networks --- Gallium-Arsenide (GaAs) --- radiation-based flowmeter --- two-phase flow --- feature extraction --- artificial intelligence --- time domain --- Boltzmann equation --- collision integral --- convolutional neural network --- annular regime --- scale layer-independent --- petroleum pipeline --- volume fraction --- dual energy technique --- prescribed heat flux --- similarity solutions --- dual solutions --- stability analysis --- RBF-FD --- node sampling --- lebesgue constant --- complex regions --- finite-difference methods --- data assimilation --- model order reduction --- finite elements analysis --- high dimensional data --- welding --- radial basis functions --- finite difference methods --- traveling waves --- non-uniform grids --- chaotic oscillator --- one-step method --- multi-step method --- computer arithmetic --- FPGA --- high strain rate impact --- modeling and simulation --- smoothed particle hydrodynamics --- finite element analysis --- hybrid nanofluid --- heat transfer --- non-isothermal --- shrinking surface --- MHD --- radiation --- multilayer perceptrons --- quaternion neural networks --- metaheuristic optimization --- genetic algorithms --- micropolar fluid --- constricted channel --- MHD pulsatile flow --- strouhal number --- flow pulsation parameter --- multiple integral finite volume method --- finite difference method --- Rosenau-KdV --- conservation --- solvability --- convergence --- transmission electron microscopy (TEM) --- convolutional neural networks (CNN) --- anomaly detection --- principal component analysis (PCA) --- machine learning --- deep learning --- neural networks --- Gallium-Arsenide (GaAs) --- radiation-based flowmeter --- two-phase flow --- feature extraction --- artificial intelligence --- time domain --- Boltzmann equation --- collision integral --- convolutional neural network --- annular regime --- scale layer-independent --- petroleum pipeline --- volume fraction --- dual energy technique --- prescribed heat flux --- similarity solutions --- dual solutions --- stability analysis --- RBF-FD --- node sampling --- lebesgue constant --- complex regions --- finite-difference methods --- data assimilation --- model order reduction --- finite elements analysis --- high dimensional data --- welding
Choose an application
As faster and more efficient numerical algorithms become available, the understanding of the physics and the mathematical foundation behind these new methods will play an increasingly important role. This Special Issue provides a platform for researchers from both academia and industry to present their novel computational methods that have engineering and physics applications.
radial basis functions --- finite difference methods --- traveling waves --- non-uniform grids --- chaotic oscillator --- one-step method --- multi-step method --- computer arithmetic --- FPGA --- high strain rate impact --- modeling and simulation --- smoothed particle hydrodynamics --- finite element analysis --- hybrid nanofluid --- heat transfer --- non-isothermal --- shrinking surface --- MHD --- radiation --- multilayer perceptrons --- quaternion neural networks --- metaheuristic optimization --- genetic algorithms --- micropolar fluid --- constricted channel --- MHD pulsatile flow --- strouhal number --- flow pulsation parameter --- multiple integral finite volume method --- finite difference method --- Rosenau-KdV --- conservation --- solvability --- convergence --- transmission electron microscopy (TEM) --- convolutional neural networks (CNN) --- anomaly detection --- principal component analysis (PCA) --- machine learning --- deep learning --- neural networks --- Gallium-Arsenide (GaAs) --- radiation-based flowmeter --- two-phase flow --- feature extraction --- artificial intelligence --- time domain --- Boltzmann equation --- collision integral --- convolutional neural network --- annular regime --- scale layer-independent --- petroleum pipeline --- volume fraction --- dual energy technique --- prescribed heat flux --- similarity solutions --- dual solutions --- stability analysis --- RBF-FD --- node sampling --- lebesgue constant --- complex regions --- finite-difference methods --- data assimilation --- model order reduction --- finite elements analysis --- high dimensional data --- welding
Listing 1 - 5 of 5 |
Sort by
|