Listing 1 - 10 of 33 | << page >> |
Sort by
|
Choose an application
This licentiate thesis by Ziya Gülgün addresses security challenges in wireless communication technologies, focusing on physical layer security in massive MIMO and GNSS systems. It examines the vulnerabilities of these technologies to spoofing and jamming attacks, which can disrupt communication and provide false signals. The thesis proposes new detection techniques and strategies to mitigate these threats, enhancing the robustness of massive MIMO, a key technology in 5G networks, against distributed jammers. Additionally, it introduces a detector for GNSS receivers capable of identifying multiple spoofers without prior information. The work aims to contribute to the development of more secure wireless communication systems, relevant to both academic researchers and professionals in the field of electrical engineering and communication systems.
Choose an application
This doctoral thesis by Amin Ghazanfari explores power control and channel estimation in multi-cell massive MIMO systems, crucial for 5G mobile communication networks. Massive MIMO technology, characterized by base stations with numerous antennas, enhances signal strength and efficiency through adaptive beamforming. The thesis addresses challenges in resource allocation, particularly in device-to-device (D2D) communication, proposing novel power control and pilot transmission schemes to optimize spectral and energy efficiency. Furthermore, it presents a scalable power control approach for multi-cell networks, maximizing geometric mean of per-cell performance. The work also investigates downlink channel estimation improvements using model-based and data-driven approaches, aiming to enhance performance beyond reliance on statistical knowledge. The research primarily targets professionals and researchers in electrical engineering and communication systems.
Choose an application
This state-of-the-art book deals with advanced spatial modulation (ASM), which are a special class of recent Multiple-Input Multiple-Output MIMO techniques, for various applications like radio frequency (RF) based body area network (BAN) communication, free-space optical (FSO) communication, underwater optical wireless communication (UOWC) and hybrid FSO/RF communication. The performance analysis of such systems is achieved in terms of certain performance metrics and compared with other techniques available in the literature. Such SM based schemes can find its application in advanced 5G and 6G communications. The diagrams of the system models of the different schemes along with tables and examples will help readers get a clear understanding of this approach. This book elucidates required derivations, examples, and links various concepts related to this field so that readers can gain comprehensive knowledge. Pseudo codes or algorithms or MATLAB/MATHEMATICA programs are also provided so that readers can easily implement the concepts which they learn. This volume will be useful for students, researchers, and industry alike.
Electrical engineering. --- Microwaves. --- Optical engineering. --- Communications Engineering, Networks. --- Microwaves, RF and Optical Engineering. --- Mechanical engineering --- Hertzian waves --- Electric waves --- Electromagnetic waves --- Geomagnetic micropulsations --- Radio waves --- Shortwave radio --- Electric engineering --- Engineering --- MIMO systems. --- Multiple input-multiple output systems --- Wireless communication systems
Choose an application
Presentations and discussion on research results on smart antennas, spanning theoretical analyses as well as technical and implementation aspects, in modern wireless communications. Topics of interest includes: - Massive MIMO and Beyond - Network/Distributed MIMO - Multicell Systems and Interference - Beamforming Techniques - Cloud Radio Access Networks - Millimetre Wave and Terahertz Communication - Ultra-Low Latency Communication - Channel Modelling and Estimation - Compressive Sensing and Sparse Processing - Machine Learning for PHY/MAC Design - Multi-antenna Techniques and Security - MIMO Radar and Multi-sensor Processing - Joint Communication and Sensing - Cooperative and Sensor Networks - Device-to-Device Communication - Vehicular Communication - Uncoordinated and Massive Access - Localization - Field Trials and Demonstrators.
Machine Learning --- Wireless Communications --- Beamforming Techniques --- Smart Antenna --- Wireless Technology --- Channel Modelling --- Cloud Radio Access Networks --- Massive/Full-Dimension MIMO --- Network/Distributed MIMO --- Ultra-Low Latency Communic. --- Learning, Machine --- Artificial intelligence --- Machine theory --- Wireless communication systems --- Beamforming --- Smart Antennas --- Wireless sensor networks --- C-RAN (Cloud-RAN) --- Centralized-RAN --- Ultra-Low Latency Communications --- WSNs (Sensor networks) --- Computer networks --- Low voltage systems --- Sensor networks --- Context-aware computing --- Spatial filtering (Signal processing) --- Signal processing --- Machine learning --- Beamforming. --- Wireless sensor networks.
Choose an application
Distributed MIMO and cell-free mobile communication are emerging technologies of wireless communication. This book introduces the fundamental theory, key technology and the prototype system of distributed MIMO and cellular free mobile communication system, including the unified system model, capacity and spectral efficiency analysis under imperfect channel information, cell edge effect, optimal power allocation and energy efficiency optimization, cache optimization, low complexity wireless transmission technology and new network assisted full duplex technology. In addition, the implementation of distributed MIMO based on cloud architecture is introduced in detail, and software and hardware implementation and test results are also given in detail. This book will benefit senior undergraduates, postgraduates, scholars and engineers who are engaged in wireless mobile communication research. It can also be used as a reference book for postgraduates and researchers in the field of electronic and information engineering.
Wireless communication systems. --- Mobile communication systems. --- Wireless and Mobile Communication. --- Vehicles --- Vehicular communication systems --- Radio --- Wireless communication systems --- Communication systems, Wireless --- Wireless data communication systems --- Wireless information networks --- Wireless telecommunication systems --- Telecommunication systems --- Communication systems --- Mobile communication systems --- MIMO systems --- Computer programs. --- Multiple input-multiple output systems
Choose an application
Remotely sensed geophysical datasets are being produced at increasingly fast rates to monitor various aspects of the Earth system in a rapidly changing world. The efficient and innovative use of these datasets to understand hydrological processes in various climatic and vegetation regimes under anthropogenic impacts has become an important challenge, but with a wide range of research opportunities. The ten contributions in this Special Issue have addressed the following four research topics: (1) Evapotranspiration estimation; (2) rainfall monitoring and prediction; (3) flood simulations and predictions; and (4) monitoring of ecohydrological processes using remote sensing techniques. Moreover, the authors have provided broader discussions on how to capitalize on state-of-the-art remote sensing techniques to improve hydrological model simulations and predictions, to enhance their skills in reproducing processes for the fast-changing world.
Research & information: general --- rainfall monitoring --- remote sensing --- rain rate estimation --- 5G --- millimeter-wave --- E-band --- LOS-MIMO --- UAV remote sensing --- Ephemeral rivers --- flood peak discharge --- incipient motion --- arid ungauged regions --- flash flood --- Integrated Multi-Satellite Retrievals for Global Precipitation Measurement --- Rainfall Triggering Index --- Yunnan --- ecological water transfer --- wetland vegetation ecosystem --- surface and groundwater interaction --- northwestern China --- WRF-3DVar data assimilation --- coupled atmospheric-hydrologic system --- rainfall-runoff prediction --- lumped Hebei model --- grid-based Hebei model --- WRF-Hydro modeling system --- evapotranspiration --- model --- SWAT --- calibration --- regression --- Sierra Nevada --- flux tower --- water limitation --- vapor pressure deficit --- double-mass analysis --- coefficient of variability --- seasonal ARIMA --- MK-S trend analysis --- evaporation --- LAI --- NDVI --- urban ecosystem --- sponge city --- PML-V2 --- Penman–Monteith equation --- Sentinel-2 --- assimilation frequency --- data assimilation --- WRF-3DAVR --- radar reflectivity --- rainfall forecast --- urban flood --- design rainfall --- ungauged drainage basin --- RainyDay --- IDF formula --- hydrological prediction --- climate change --- land use change
Choose an application
The dynamics of systems have proven to be very powerful tools in understanding the behavior of different natural phenomena throughout the last two centuries. However, the attributes of natural systems are observed to deviate from their classical states due to the effect of different types of uncertainties. Actually, randomness and impreciseness are the two major sources of uncertainties in natural systems. Randomness is modeled by different stochastic processes and impreciseness could be modeled by fuzzy sets, rough sets, Dempster–Shafer theory, etc.
Fuzzy MARCOS --- Fuzzy PIPRECIA --- traffic risk --- TFN --- MCDM --- dual-rotor --- multi-frequency excitation --- non-intrusive calculation --- metamodel --- NDSL model --- AHP --- criteria weights --- pairwise comparisons --- AES --- PC --- MIMO discrete-time system --- state feedback and output feedback --- parameter dependence --- D numbers --- fuzzy sets --- DEMATEL --- multi-criteria decision-making --- multi-criteria optimization --- RAFSI method --- performance comparison --- rank reversal --- Magnetic Resonance Imaging (MRI) --- wavelet transform --- GARCH --- LLA --- LDA --- KNN --- BWM --- BWM-I --- multi-criteria --- renewable energy --- the CCSD method --- the ITARA method --- the MARCOS method --- stackers --- logistics --- ensemble techniques --- data mining --- classification and discrimination --- linear regression --- applied mathematics general --- prediction theory --- theory of mathematical modeling --- medical applications --- empathic building --- fuzzy grey cognitive maps --- Thayer’s emotion model --- artificial emotions --- affective computing --- n/a --- Thayer's emotion model
Choose an application
Remotely sensed geophysical datasets are being produced at increasingly fast rates to monitor various aspects of the Earth system in a rapidly changing world. The efficient and innovative use of these datasets to understand hydrological processes in various climatic and vegetation regimes under anthropogenic impacts has become an important challenge, but with a wide range of research opportunities. The ten contributions in this Special Issue have addressed the following four research topics: (1) Evapotranspiration estimation; (2) rainfall monitoring and prediction; (3) flood simulations and predictions; and (4) monitoring of ecohydrological processes using remote sensing techniques. Moreover, the authors have provided broader discussions on how to capitalize on state-of-the-art remote sensing techniques to improve hydrological model simulations and predictions, to enhance their skills in reproducing processes for the fast-changing world.
rainfall monitoring --- remote sensing --- rain rate estimation --- 5G --- millimeter-wave --- E-band --- LOS-MIMO --- UAV remote sensing --- Ephemeral rivers --- flood peak discharge --- incipient motion --- arid ungauged regions --- flash flood --- Integrated Multi-Satellite Retrievals for Global Precipitation Measurement --- Rainfall Triggering Index --- Yunnan --- ecological water transfer --- wetland vegetation ecosystem --- surface and groundwater interaction --- northwestern China --- WRF-3DVar data assimilation --- coupled atmospheric-hydrologic system --- rainfall-runoff prediction --- lumped Hebei model --- grid-based Hebei model --- WRF-Hydro modeling system --- evapotranspiration --- model --- SWAT --- calibration --- regression --- Sierra Nevada --- flux tower --- water limitation --- vapor pressure deficit --- double-mass analysis --- coefficient of variability --- seasonal ARIMA --- MK-S trend analysis --- evaporation --- LAI --- NDVI --- urban ecosystem --- sponge city --- PML-V2 --- Penman–Monteith equation --- Sentinel-2 --- assimilation frequency --- data assimilation --- WRF-3DAVR --- radar reflectivity --- rainfall forecast --- urban flood --- design rainfall --- ungauged drainage basin --- RainyDay --- IDF formula --- hydrological prediction --- climate change --- land use change
Choose an application
Remotely sensed geophysical datasets are being produced at increasingly fast rates to monitor various aspects of the Earth system in a rapidly changing world. The efficient and innovative use of these datasets to understand hydrological processes in various climatic and vegetation regimes under anthropogenic impacts has become an important challenge, but with a wide range of research opportunities. The ten contributions in this Special Issue have addressed the following four research topics: (1) Evapotranspiration estimation; (2) rainfall monitoring and prediction; (3) flood simulations and predictions; and (4) monitoring of ecohydrological processes using remote sensing techniques. Moreover, the authors have provided broader discussions on how to capitalize on state-of-the-art remote sensing techniques to improve hydrological model simulations and predictions, to enhance their skills in reproducing processes for the fast-changing world.
Research & information: general --- rainfall monitoring --- remote sensing --- rain rate estimation --- 5G --- millimeter-wave --- E-band --- LOS-MIMO --- UAV remote sensing --- Ephemeral rivers --- flood peak discharge --- incipient motion --- arid ungauged regions --- flash flood --- Integrated Multi-Satellite Retrievals for Global Precipitation Measurement --- Rainfall Triggering Index --- Yunnan --- ecological water transfer --- wetland vegetation ecosystem --- surface and groundwater interaction --- northwestern China --- WRF-3DVar data assimilation --- coupled atmospheric-hydrologic system --- rainfall-runoff prediction --- lumped Hebei model --- grid-based Hebei model --- WRF-Hydro modeling system --- evapotranspiration --- model --- SWAT --- calibration --- regression --- Sierra Nevada --- flux tower --- water limitation --- vapor pressure deficit --- double-mass analysis --- coefficient of variability --- seasonal ARIMA --- MK-S trend analysis --- evaporation --- LAI --- NDVI --- urban ecosystem --- sponge city --- PML-V2 --- Penman–Monteith equation --- Sentinel-2 --- assimilation frequency --- data assimilation --- WRF-3DAVR --- radar reflectivity --- rainfall forecast --- urban flood --- design rainfall --- ungauged drainage basin --- RainyDay --- IDF formula --- hydrological prediction --- climate change --- land use change
Choose an application
The dynamics of systems have proven to be very powerful tools in understanding the behavior of different natural phenomena throughout the last two centuries. However, the attributes of natural systems are observed to deviate from their classical states due to the effect of different types of uncertainties. Actually, randomness and impreciseness are the two major sources of uncertainties in natural systems. Randomness is modeled by different stochastic processes and impreciseness could be modeled by fuzzy sets, rough sets, Dempster–Shafer theory, etc.
Research & information: general --- Mathematics & science --- Fuzzy MARCOS --- Fuzzy PIPRECIA --- traffic risk --- TFN --- MCDM --- dual-rotor --- multi-frequency excitation --- non-intrusive calculation --- metamodel --- NDSL model --- AHP --- criteria weights --- pairwise comparisons --- AES --- PC --- MIMO discrete-time system --- state feedback and output feedback --- parameter dependence --- D numbers --- fuzzy sets --- DEMATEL --- multi-criteria decision-making --- multi-criteria optimization --- RAFSI method --- performance comparison --- rank reversal --- Magnetic Resonance Imaging (MRI) --- wavelet transform --- GARCH --- LLA --- LDA --- KNN --- BWM --- BWM-I --- multi-criteria --- renewable energy --- the CCSD method --- the ITARA method --- the MARCOS method --- stackers --- logistics --- ensemble techniques --- data mining --- classification and discrimination --- linear regression --- applied mathematics general --- prediction theory --- theory of mathematical modeling --- medical applications --- empathic building --- fuzzy grey cognitive maps --- Thayer's emotion model --- artificial emotions --- affective computing
Listing 1 - 10 of 33 | << page >> |
Sort by
|