Narrow your search

Library

FARO (6)

KU Leuven (6)

LUCA School of Arts (6)

Odisee (6)

Thomas More Kempen (6)

Thomas More Mechelen (6)

UCLL (6)

ULiège (6)

VIVES (6)

Vlaams Parlement (6)

More...

Resource type

book (17)


Language

English (17)


Year
From To Submit

2021 (17)

Listing 1 - 10 of 17 << page
of 2
>>
Sort by

Book
Biochemical and Thermochemical Conversion Processes of Lignicellulosic Biomass Fractionated Streams
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Moving towards a sustainable and green economy requires the use of renewable resources for the production of fuels, chemicals, and materials. In such a scenario, the use of lignocellulosic biomass and waste streams plays an important role, as it consists of abundant renewable resources. The complex nature of lignocellulosic biomass dictates the use of a pretreatment process prior to any further processing. Traditional methods of biomass pretreatment fail to recover cellulose, hemicellulose, and lignin in clean streams. It has been recognized that the efficient use of all the main fractions of lignocellulosic biomass (cellulose, hemicellulose, and lignin) is an important step towards a financially sustainable biomass biorefinery. In this context, switching from biomass pretreatment to biomass fractionation can offer a sustainable solution to recover relatively clean streams of cellulose, hemicellulose, and lignin. This Special issue aims at exploring the most advanced solutions in biomass and waste pretreatment and fractionation techniques, together with novel (thermo)chemical and biochemical processes for the conversion of fractionated cellulose, hemicellulose and lignin to bioenergy, bio-based chemicals, and biomaterials, including the application of such products (i.e., use of biochar for filtration and metallurgical processes), as well as recent developments in kinetic, thermodynamic, and numeric modeling of conversion processes. The scope of this Special Issue will also cover progress in advanced measuring methods and techniques used in the characterization of biomass, waste, and products.


Book
Biochemical and Thermochemical Conversion Processes of Lignicellulosic Biomass Fractionated Streams
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Moving towards a sustainable and green economy requires the use of renewable resources for the production of fuels, chemicals, and materials. In such a scenario, the use of lignocellulosic biomass and waste streams plays an important role, as it consists of abundant renewable resources. The complex nature of lignocellulosic biomass dictates the use of a pretreatment process prior to any further processing. Traditional methods of biomass pretreatment fail to recover cellulose, hemicellulose, and lignin in clean streams. It has been recognized that the efficient use of all the main fractions of lignocellulosic biomass (cellulose, hemicellulose, and lignin) is an important step towards a financially sustainable biomass biorefinery. In this context, switching from biomass pretreatment to biomass fractionation can offer a sustainable solution to recover relatively clean streams of cellulose, hemicellulose, and lignin. This Special issue aims at exploring the most advanced solutions in biomass and waste pretreatment and fractionation techniques, together with novel (thermo)chemical and biochemical processes for the conversion of fractionated cellulose, hemicellulose and lignin to bioenergy, bio-based chemicals, and biomaterials, including the application of such products (i.e., use of biochar for filtration and metallurgical processes), as well as recent developments in kinetic, thermodynamic, and numeric modeling of conversion processes. The scope of this Special Issue will also cover progress in advanced measuring methods and techniques used in the characterization of biomass, waste, and products.


Book
Environmentally Friendly Polymeric Blends from Renewable Sources
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Materials from renewable resources have attracted increasing attention in recent decades as a result of environmental concerns and due to the depletion of petroleum resources. Polymeric materials from renewable sources have a long history. They were used in ancient times and later accompanied the development of man and civilization. Currently, they are widespread in many areas of life and used, for example, in packaging and in the automotive, construction and pharmaceutical industries.The aim of this Special Issue is to highlight the progress in the manufacturing, characterization, and applications of environmentally friendly polymeric blends from renewable resources. The following aspects were investigated: (i) synthesis of composites based on natural llers; (ii) chemical modi cation of polymers or fillers in order to improve interfacial interactions; (iii) potential applications of the biobased materials.

Keywords

Environmental science, engineering & technology --- lignin --- microspheres --- composites --- polymeric material --- fractionation --- porosity --- radiation grafting --- cotton linter --- phosphate adsorption --- dynamic studies --- bio-polyethylene --- barley straw --- thermomechanical fibers --- interface --- automotive industry --- natural fiber --- polypropylene --- stiffness --- curauá fibers --- microcrystalline cellulose (MCC) --- unsaturated polyester resins --- thermogravimetric analysis (TG) --- mechanical analysis --- dynamic mechanical analysis (DMA) --- LignoBoost® kraft lignin --- potentiometric sensors --- carbon nanotubes --- impedance spectroscopy --- transition metals --- rice nanofibers --- biocomposites --- casting --- mechanical properties --- thermal properties --- rigid polyurethane foams --- lignocellulosic materials --- filler --- chemical treatment --- mechanical characteristics --- pyrolysis process --- Caragana korshinskii biochar --- physicochemical properties --- adsorption characteristics --- nitrate nitrogen --- bio-oil --- polyurethanes --- hemp shives --- bio-filler --- oil impregnation --- sugar beet pulp --- thermal conductivity --- polyurethane composites --- lavender --- kaolinite --- hydroxyapatite --- high-ball milling process --- antibacterial activity --- wood-resin composites --- unsaturated polyester resin --- recycled PET --- wood flour --- renewable resources --- silver nanoparticles --- lignin --- microspheres --- composites --- polymeric material --- fractionation --- porosity --- radiation grafting --- cotton linter --- phosphate adsorption --- dynamic studies --- bio-polyethylene --- barley straw --- thermomechanical fibers --- interface --- automotive industry --- natural fiber --- polypropylene --- stiffness --- curauá fibers --- microcrystalline cellulose (MCC) --- unsaturated polyester resins --- thermogravimetric analysis (TG) --- mechanical analysis --- dynamic mechanical analysis (DMA) --- LignoBoost® kraft lignin --- potentiometric sensors --- carbon nanotubes --- impedance spectroscopy --- transition metals --- rice nanofibers --- biocomposites --- casting --- mechanical properties --- thermal properties --- rigid polyurethane foams --- lignocellulosic materials --- filler --- chemical treatment --- mechanical characteristics --- pyrolysis process --- Caragana korshinskii biochar --- physicochemical properties --- adsorption characteristics --- nitrate nitrogen --- bio-oil --- polyurethanes --- hemp shives --- bio-filler --- oil impregnation --- sugar beet pulp --- thermal conductivity --- polyurethane composites --- lavender --- kaolinite --- hydroxyapatite --- high-ball milling process --- antibacterial activity --- wood-resin composites --- unsaturated polyester resin --- recycled PET --- wood flour --- renewable resources --- silver nanoparticles


Book
Biochemical and Thermochemical Conversion Processes of Lignicellulosic Biomass Fractionated Streams
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Moving towards a sustainable and green economy requires the use of renewable resources for the production of fuels, chemicals, and materials. In such a scenario, the use of lignocellulosic biomass and waste streams plays an important role, as it consists of abundant renewable resources. The complex nature of lignocellulosic biomass dictates the use of a pretreatment process prior to any further processing. Traditional methods of biomass pretreatment fail to recover cellulose, hemicellulose, and lignin in clean streams. It has been recognized that the efficient use of all the main fractions of lignocellulosic biomass (cellulose, hemicellulose, and lignin) is an important step towards a financially sustainable biomass biorefinery. In this context, switching from biomass pretreatment to biomass fractionation can offer a sustainable solution to recover relatively clean streams of cellulose, hemicellulose, and lignin. This Special issue aims at exploring the most advanced solutions in biomass and waste pretreatment and fractionation techniques, together with novel (thermo)chemical and biochemical processes for the conversion of fractionated cellulose, hemicellulose and lignin to bioenergy, bio-based chemicals, and biomaterials, including the application of such products (i.e., use of biochar for filtration and metallurgical processes), as well as recent developments in kinetic, thermodynamic, and numeric modeling of conversion processes. The scope of this Special Issue will also cover progress in advanced measuring methods and techniques used in the characterization of biomass, waste, and products.

Keywords

Technology: general issues --- Acacia tortilis --- biofuel --- biomass --- pine dust --- pyrolysis --- Napier grass --- bioethanol --- biomass fractionation --- enzyme hydrolysis --- acid pretreatment --- alkali pretreatment --- microwave-assisted pretreatment --- pretreatment parameters --- enzymatic hydrolysis --- glucose --- xylose --- lignocellulosic sugars --- microbial lipid --- olive mill wastewater --- Cryptococcus curvatus --- Lipomyces starkeyi --- lignin --- organosolv fractionation --- TGA --- 31P NMR --- HSQC --- heat treatment --- charcoal --- electrical resistivity --- coal --- coke --- high-temperature treatment --- organosolv --- Kraft lignin --- etherification --- lignin functionalization --- thermoplastics --- oxidative lignin upgrade --- catalytic lignin oxidation --- vanadate --- molybdate --- ionosolv --- biomimetic --- bio-based reductant --- ferroalloy industry --- kiln --- 2nd generation sugars --- lignocellulose --- hydrolyzate --- biorefinery --- furfural --- hydroxymethylfurfural --- bioeconomy --- life cycle assessment --- sustainable biomass growth --- mining --- metallurgical coke --- Acacia tortilis --- biofuel --- biomass --- pine dust --- pyrolysis --- Napier grass --- bioethanol --- biomass fractionation --- enzyme hydrolysis --- acid pretreatment --- alkali pretreatment --- microwave-assisted pretreatment --- pretreatment parameters --- enzymatic hydrolysis --- glucose --- xylose --- lignocellulosic sugars --- microbial lipid --- olive mill wastewater --- Cryptococcus curvatus --- Lipomyces starkeyi --- lignin --- organosolv fractionation --- TGA --- 31P NMR --- HSQC --- heat treatment --- charcoal --- electrical resistivity --- coal --- coke --- high-temperature treatment --- organosolv --- Kraft lignin --- etherification --- lignin functionalization --- thermoplastics --- oxidative lignin upgrade --- catalytic lignin oxidation --- vanadate --- molybdate --- ionosolv --- biomimetic --- bio-based reductant --- ferroalloy industry --- kiln --- 2nd generation sugars --- lignocellulose --- hydrolyzate --- biorefinery --- furfural --- hydroxymethylfurfural --- bioeconomy --- life cycle assessment --- sustainable biomass growth --- mining --- metallurgical coke


Book
Lignocellulosic Biomass
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recently, there has been a growing awareness of the need to make better use of natural resources. Hence, the utilization of biomass has led to so-called biorefinery, consisting of the fractionation or separation of the different components of the lignocellulosic materials in order to achieve a total utilization of the same, and not only of the cellulosic fraction for paper production. The use of plant biomass as a basic raw material implies a shift from an economy based on the exploitation of non-renewable fossil fuels, with limited reserves or with regeneration cycles far below the rates of exploitation, to a bioeconomy based on the use of renewable organic natural resources, with balanced regeneration and extraction cycles. To make this change, profound readjustments in existing technologies are necessary, as well as the application of new approaches in research, development, and production."Biorefinery" is the term used to describe the technology for the fractionation of plant biomass into energy, chemicals, and consumer goods. The future generation of biorefinery will include treatments, leading to high-value-added compounds. The use of green chemistry technologies and principles in biorefineries, such as solvent and reagent recovery and the minimization of effluent and gas emissions, is essential to define an economically and environmentally sustainable process.In particular, the biorefinery of lignocellulosic materials to produce biofuels, chemicals and materials is presented as a solid alternative to the current petrochemical platform and a possible solution to the accumulation of greenhouse gases.

Keywords

Research & information: general --- lignocellulosic biomass --- solid-state fermentation --- enzymatic hydrolysis --- aerated bioreactor --- Aspergillus oryzae --- lignin --- lignocellulose --- aromatics --- biobased --- epoxy --- fatty acid --- biopolymers --- biobased materials --- biorenewable --- bio-based filament --- 3D printing --- sugarcane bagasse pulp --- barley straw --- composite --- flexural strength --- biobased polyethylene --- nanocellulose --- β-cyclodextrin --- cryogels --- films --- biomaterials --- cellulose --- dialdehyde cellulose --- organosilane chemistry --- 29Si NMR --- solid state NMR --- silanization --- lignocellulose valorization --- 'lignin-first' --- reductive catalytic fractionation --- lignocellulose nanofibers --- horticultural residues --- paperboard --- recycling --- biosurfactants --- enzymatic saccharification --- fermentation --- quinoa saponins --- steam-pretreated spruce --- lignocellulosic material --- xylose --- furfural --- iron chloride --- microwave reactor --- biorefinery --- electrosynthesis --- biomass --- carbohydrate --- saccharides --- electro-oxidation --- electroreduction --- residue --- agro-industry --- high-value products --- banana --- torrefaction --- Jerusalem artichoke --- biofuel --- energy crops --- agiculture --- micro-fibrillated cellulose --- formaldehyde adhesives --- wood-based panels --- kraft lignin --- adsorbent material --- copper adsorption --- H2S adsorption --- H2S removal --- lignocellulosic biomass --- solid-state fermentation --- enzymatic hydrolysis --- aerated bioreactor --- Aspergillus oryzae --- lignin --- lignocellulose --- aromatics --- biobased --- epoxy --- fatty acid --- biopolymers --- biobased materials --- biorenewable --- bio-based filament --- 3D printing --- sugarcane bagasse pulp --- barley straw --- composite --- flexural strength --- biobased polyethylene --- nanocellulose --- β-cyclodextrin --- cryogels --- films --- biomaterials --- cellulose --- dialdehyde cellulose --- organosilane chemistry --- 29Si NMR --- solid state NMR --- silanization --- lignocellulose valorization --- 'lignin-first' --- reductive catalytic fractionation --- lignocellulose nanofibers --- horticultural residues --- paperboard --- recycling --- biosurfactants --- enzymatic saccharification --- fermentation --- quinoa saponins --- steam-pretreated spruce --- lignocellulosic material --- xylose --- furfural --- iron chloride --- microwave reactor --- biorefinery --- electrosynthesis --- biomass --- carbohydrate --- saccharides --- electro-oxidation --- electroreduction --- residue --- agro-industry --- high-value products --- banana --- torrefaction --- Jerusalem artichoke --- biofuel --- energy crops --- agiculture --- micro-fibrillated cellulose --- formaldehyde adhesives --- wood-based panels --- kraft lignin --- adsorbent material --- copper adsorption --- H2S adsorption --- H2S removal


Book
Environmentally Friendly Polymeric Blends from Renewable Sources
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Materials from renewable resources have attracted increasing attention in recent decades as a result of environmental concerns and due to the depletion of petroleum resources. Polymeric materials from renewable sources have a long history. They were used in ancient times and later accompanied the development of man and civilization. Currently, they are widespread in many areas of life and used, for example, in packaging and in the automotive, construction and pharmaceutical industries.The aim of this Special Issue is to highlight the progress in the manufacturing, characterization, and applications of environmentally friendly polymeric blends from renewable resources. The following aspects were investigated: (i) synthesis of composites based on natural llers; (ii) chemical modi cation of polymers or fillers in order to improve interfacial interactions; (iii) potential applications of the biobased materials.

Keywords

Environmental science, engineering & technology --- lignin --- microspheres --- composites --- polymeric material --- fractionation --- porosity --- radiation grafting --- cotton linter --- phosphate adsorption --- dynamic studies --- bio-polyethylene --- barley straw --- thermomechanical fibers --- interface --- automotive industry --- natural fiber --- polypropylene --- stiffness --- curauá fibers --- microcrystalline cellulose (MCC) --- unsaturated polyester resins --- thermogravimetric analysis (TG) --- mechanical analysis --- dynamic mechanical analysis (DMA) --- LignoBoost® kraft lignin --- potentiometric sensors --- carbon nanotubes --- impedance spectroscopy --- transition metals --- rice nanofibers --- biocomposites --- casting --- mechanical properties --- thermal properties --- rigid polyurethane foams --- lignocellulosic materials --- filler --- chemical treatment --- mechanical characteristics --- pyrolysis process --- Caragana korshinskii biochar --- physicochemical properties --- adsorption characteristics --- nitrate nitrogen --- bio-oil --- polyurethanes --- hemp shives --- bio-filler --- oil impregnation --- sugar beet pulp --- thermal conductivity --- polyurethane composites --- lavender --- kaolinite --- hydroxyapatite --- high-ball milling process --- antibacterial activity --- wood–resin composites --- unsaturated polyester resin --- recycled PET --- wood flour --- renewable resources --- silver nanoparticles --- n/a --- curauá fibers --- wood-resin composites


Book
Lignocellulosic Biomass
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recently, there has been a growing awareness of the need to make better use of natural resources. Hence, the utilization of biomass has led to so-called biorefinery, consisting of the fractionation or separation of the different components of the lignocellulosic materials in order to achieve a total utilization of the same, and not only of the cellulosic fraction for paper production. The use of plant biomass as a basic raw material implies a shift from an economy based on the exploitation of non-renewable fossil fuels, with limited reserves or with regeneration cycles far below the rates of exploitation, to a bioeconomy based on the use of renewable organic natural resources, with balanced regeneration and extraction cycles. To make this change, profound readjustments in existing technologies are necessary, as well as the application of new approaches in research, development, and production."Biorefinery" is the term used to describe the technology for the fractionation of plant biomass into energy, chemicals, and consumer goods. The future generation of biorefinery will include treatments, leading to high-value-added compounds. The use of green chemistry technologies and principles in biorefineries, such as solvent and reagent recovery and the minimization of effluent and gas emissions, is essential to define an economically and environmentally sustainable process.In particular, the biorefinery of lignocellulosic materials to produce biofuels, chemicals and materials is presented as a solid alternative to the current petrochemical platform and a possible solution to the accumulation of greenhouse gases.

Keywords

Research & information: general --- lignocellulosic biomass --- solid-state fermentation --- enzymatic hydrolysis --- aerated bioreactor --- Aspergillus oryzae --- lignin --- lignocellulose --- aromatics --- biobased --- epoxy --- fatty acid --- biopolymers --- biobased materials --- biorenewable --- bio-based filament --- 3D printing --- sugarcane bagasse pulp --- barley straw --- composite --- flexural strength --- biobased polyethylene --- nanocellulose --- β-cyclodextrin --- cryogels --- films --- biomaterials --- cellulose --- dialdehyde cellulose --- organosilane chemistry --- 29Si NMR --- solid state NMR --- silanization --- lignocellulose valorization --- ‘lignin-first’ --- reductive catalytic fractionation --- lignocellulose nanofibers --- horticultural residues --- paperboard --- recycling --- biosurfactants --- enzymatic saccharification --- fermentation --- quinoa saponins --- steam-pretreated spruce --- lignocellulosic material --- xylose --- furfural --- iron chloride --- microwave reactor --- biorefinery --- electrosynthesis --- biomass --- carbohydrate --- saccharides --- electro-oxidation --- electroreduction --- residue --- agro-industry --- high-value products --- banana --- torrefaction --- Jerusalem artichoke --- biofuel --- energy crops --- agiculture --- micro-fibrillated cellulose --- formaldehyde adhesives --- wood-based panels --- kraft lignin --- adsorbent material --- copper adsorption --- H2S adsorption --- H2S removal --- n/a --- 'lignin-first'


Book
Production of Biofuels and Numerical Modeling of Chemical Combustion Systems
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biofuels have recently attracted a lot of attention, mainly as alternative fuels for applications in energy generation and transportation. The utilization of biofuels in such controlled combustion processes has the great advantage of not depleting the limited resources of fossil fuels while leading to emissions of greenhouse gases and smoke particles similar to those of fossil fuels. On the other hand, a vast amount of biofuels are subjected to combustion in small-scale processes, such as for heating and cooking in residential dwellings, as well as in agricultural operations, such as crop residue removal and land clearing. In addition, large amounts of biomass are consumed annually during forest and savanna fires in many parts of the world. These types of burning processes are typically uncontrolled and unregulated. Consequently, the emissions from these processes may be larger compared to industrial-type operations. Aside from direct effects on human health, especially due to a sizeable fraction of the smoke emissions remaining inside residential homes, the smoke particles and gases released from uncontrolled biofuel combustion impose significant effects on the regional and global climate. Estimates have shown the majority of carbonaceous airborne particulate matter to be derived from the combustion of biofuels and biomass. “Production of Biofuels and Numerical Modelling of Chemical Combustion Systems” comprehensively overviews and includes in-depth technical research papers addressing recent progress in biofuel production and combustion processes. To be specific, this book contains sixteen high-quality studies (fifteen research papers and one review paper) addressing techniques and methods for bioenergy and biofuel production as well as challenges in the broad area of process modelling and control in combustion processes.

Keywords

microalgae --- hydrothermal liquefaction --- pretreatment --- low O and N biocrude --- biodiesel --- esterification --- free fatty acids --- glycerol --- waste cooking oil --- Computational Fluid Dynamics --- two-stroke --- dual-fuel engine --- simulation --- pre-combustion chamber --- internal combustion engine --- particulate matter emissions --- biomorphic silicon carbide --- vegetal waste --- diesel particulate filter --- biocrude --- metal-oxide catalyst --- bioethanol --- dilute acid pretreatment --- enzymatic hydrolysis --- olive stones --- Pachysolen tannophilus --- response surface methodology --- compression ignition --- direct injection --- cryogenic gas --- diesel engines --- dual fuel engines --- natural gas --- greenhouse gas emissions --- particulate matter --- carotenoids --- extremophiles --- microalgal biotechnology --- eucalyptus kraft lignin --- tree leaf --- pellet --- additive --- biofuel --- circular economy --- piston bowl --- alternative fuel --- vanes --- emulsified biofuel --- combustion --- gasification --- olive --- olive oils --- olive-pruning debris --- olive pomaces --- pyrolysis --- biogas --- environmental impact --- life cycle assessment --- olive pomace --- sustainability --- TGA --- hemicellulose --- cellulose --- lignin --- pseudocomponent kinetic model --- biomass --- culture --- scale-up --- Phaeodactylum tricornutum --- burning characteristics --- fatty acid methyl ester --- added water content --- fuel structure --- distillation temperature --- layered double hydroxide --- toluene steam reforming --- tar --- Ni-based catalyst --- hydrotalcite --- hydrogen production --- n/a


Book
Lignocellulosic Biomass
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recently, there has been a growing awareness of the need to make better use of natural resources. Hence, the utilization of biomass has led to so-called biorefinery, consisting of the fractionation or separation of the different components of the lignocellulosic materials in order to achieve a total utilization of the same, and not only of the cellulosic fraction for paper production. The use of plant biomass as a basic raw material implies a shift from an economy based on the exploitation of non-renewable fossil fuels, with limited reserves or with regeneration cycles far below the rates of exploitation, to a bioeconomy based on the use of renewable organic natural resources, with balanced regeneration and extraction cycles. To make this change, profound readjustments in existing technologies are necessary, as well as the application of new approaches in research, development, and production."Biorefinery" is the term used to describe the technology for the fractionation of plant biomass into energy, chemicals, and consumer goods. The future generation of biorefinery will include treatments, leading to high-value-added compounds. The use of green chemistry technologies and principles in biorefineries, such as solvent and reagent recovery and the minimization of effluent and gas emissions, is essential to define an economically and environmentally sustainable process.In particular, the biorefinery of lignocellulosic materials to produce biofuels, chemicals and materials is presented as a solid alternative to the current petrochemical platform and a possible solution to the accumulation of greenhouse gases.


Book
Environmentally Friendly Polymeric Blends from Renewable Sources
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Materials from renewable resources have attracted increasing attention in recent decades as a result of environmental concerns and due to the depletion of petroleum resources. Polymeric materials from renewable sources have a long history. They were used in ancient times and later accompanied the development of man and civilization. Currently, they are widespread in many areas of life and used, for example, in packaging and in the automotive, construction and pharmaceutical industries.The aim of this Special Issue is to highlight the progress in the manufacturing, characterization, and applications of environmentally friendly polymeric blends from renewable resources. The following aspects were investigated: (i) synthesis of composites based on natural llers; (ii) chemical modi cation of polymers or fillers in order to improve interfacial interactions; (iii) potential applications of the biobased materials.

Listing 1 - 10 of 17 << page
of 2
>>
Sort by