Narrow your search

Library

KU Leuven (17)

FARO (16)

LUCA School of Arts (16)

Odisee (16)

Thomas More Kempen (16)

Thomas More Mechelen (16)

UCLL (16)

ULiège (16)

VIVES (16)

Vlaams Parlement (16)

More...

Resource type

book (48)


Language

English (48)


Year
From To Submit

2021 (48)

Listing 1 - 10 of 48 << page
of 5
>>
Sort by

Book
Bio-based epoxy polymers, blends and composites : synthesis, properties, characterization and applications
Authors: --- --- ---
ISBN: 3527823611 3527823603 352782359X Year: 2021 Publisher: Wiesbaden, Germany : Wiley-VCH,

Loading...
Export citation

Choose an application

Bookmark

Abstract

"The book summaries recent research progress on bioepoxy polymers as well as their blends and composites. It covers aspects from synthesis, processing, various characterization techniques to broad spectrum of applications. It provides a correlation of physical properties with macro, micro and nanostructures of the materials. Moreover, research trends, future directions and opportunities are also discussed"--

Keywords

Epoxy resins.


Book
Coatings Imparting Multifunctional Properties to Materials
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Coatings are traditionally used to protect materials from corrosion and erosion and improve the equipment’s performance. At present, there are coatings that provide materials with new properties, for example, biocidal, hydrophobic and self-cleaning properties. A promising area of materials science is the development of "smart" coatings that simultaneously give materials several new properties. The coating propertiess are determined by the coatings’ material, the structure and the properties of the substrate surface, and the methods of forming the coatings. This book contains the results of the latest research on the formation of coatings that impart complexes of new properties to various materials.


Book
Natural Polymers and Biopolymers II
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

BioPolymers could be either natural polymers – polymer naturally occurring in Nature, such as cellulose or starch…, or biobased polymers that are artificially synthesized from natural resources. Since the late 1990s, the polymer industry has faced two serious problems: global warming and anticipation of limitation to the access to fossil resources. One solution consists in the use of sustainable resources instead of fossil-based resources. Hence, biomass feedstocks are a promising resource and biopolymers are one of the most dynamic polymer area. Additionally, biodegradability is a special functionality conferred to a material, bio-based or not. Very recently, facing the awareness of the volumes of plastic wastes, biodegradable polymers are gaining increasing attention from the market and industrial community. This special issue of Molecules deals with the current scientific and industrial challenges of Natural and Biobased Polymers, through the access of new biobased monomers, improved thermo-mechanical properties, and by substitution of harmful substances. This themed issue can be considered as collection of highlights within the field of Natural Polymers and Biobased Polymers which clearly demonstrate the increased interest in this field. We hope that this will inspire researchers to further develop this area and thus contribute to futures more sustainable society.”

Keywords

Research & information: general --- imine --- epoxide --- amine --- thermoset --- bio-based --- biobased epoxy --- cardanol --- cationic photocuring --- microfibrillated cellulose --- biobased composites --- sustainable materials --- biomass --- green chemistry --- mechanims --- humins --- epoxy resins --- thermosets --- kinetics --- ring-opening --- biobased --- polyurethane foam --- catalyst --- polycarbonates --- furan-maleimide --- Diels-Alder --- fatty acids --- melt extrusion --- 3D printing --- cellulose nanofibrils --- biocomposite filaments --- physical property --- drained and undrained peatlands --- peats --- humic acids --- thermal --- paramagnetic and optical properties --- acetylated starch --- etherified starch --- chemical composition --- macromolecular characteristics --- surface characterization --- lignin --- fractionation --- biobased polymers --- solvent extraction --- membrane-assisted ultrafiltration --- plant oil-based monomers --- mixed micelles --- methyl-β-cyclodextrin inclusion complex --- emulsion polymerization --- nanocellulose --- polymer --- coating --- textile --- adhesion --- biobased monomer --- photoinduced-polymerization --- eugenol-derived methacrylate --- bacterial cellulose --- alginate --- gelatin --- curcumin --- biomaterials --- chitosan --- silane coupling agent --- microfiber --- crosslinking --- mechanical strength --- block copolymers --- renewable resources --- RAFT --- alkyl lactate --- PSA --- terpenoid --- exo-methylene --- conjugated diene --- renewable monomer --- biobased polymer --- radical polymerization --- copolymerization --- living radical polymerization --- RAFT polymerization --- heat-resistant polymer --- n/a


Book
Tribological Behavior of Functional Surface: Models and Methods
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Material loss due to wear and corrosion and high resistance to motion generate high costs. Therefore, minimizing friction and wear is a problem of great importance. This book is focused on the tribological behavior of functional surfaces. It contains information regarding the improvement of tribological properties of sliding elements via changes in surface topography. Tribological impacts of surface texturing depending on the creation of dimples on co-acting surfaces are also discussed. The effects of various coatings on the minimization of friction and wear and corrosion resistance are also studied. Friction can be also reduced by introducing a new oil.


Book
Natural Polymers and Biopolymers II
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

BioPolymers could be either natural polymers – polymer naturally occurring in Nature, such as cellulose or starch…, or biobased polymers that are artificially synthesized from natural resources. Since the late 1990s, the polymer industry has faced two serious problems: global warming and anticipation of limitation to the access to fossil resources. One solution consists in the use of sustainable resources instead of fossil-based resources. Hence, biomass feedstocks are a promising resource and biopolymers are one of the most dynamic polymer area. Additionally, biodegradability is a special functionality conferred to a material, bio-based or not. Very recently, facing the awareness of the volumes of plastic wastes, biodegradable polymers are gaining increasing attention from the market and industrial community. This special issue of Molecules deals with the current scientific and industrial challenges of Natural and Biobased Polymers, through the access of new biobased monomers, improved thermo-mechanical properties, and by substitution of harmful substances. This themed issue can be considered as collection of highlights within the field of Natural Polymers and Biobased Polymers which clearly demonstrate the increased interest in this field. We hope that this will inspire researchers to further develop this area and thus contribute to futures more sustainable society.”

Keywords

imine --- epoxide --- amine --- thermoset --- bio-based --- biobased epoxy --- cardanol --- cationic photocuring --- microfibrillated cellulose --- biobased composites --- sustainable materials --- biomass --- green chemistry --- mechanims --- humins --- epoxy resins --- thermosets --- kinetics --- ring-opening --- biobased --- polyurethane foam --- catalyst --- polycarbonates --- furan-maleimide --- Diels-Alder --- fatty acids --- melt extrusion --- 3D printing --- cellulose nanofibrils --- biocomposite filaments --- physical property --- drained and undrained peatlands --- peats --- humic acids --- thermal --- paramagnetic and optical properties --- acetylated starch --- etherified starch --- chemical composition --- macromolecular characteristics --- surface characterization --- lignin --- fractionation --- biobased polymers --- solvent extraction --- membrane-assisted ultrafiltration --- plant oil-based monomers --- mixed micelles --- methyl-β-cyclodextrin inclusion complex --- emulsion polymerization --- nanocellulose --- polymer --- coating --- textile --- adhesion --- biobased monomer --- photoinduced-polymerization --- eugenol-derived methacrylate --- bacterial cellulose --- alginate --- gelatin --- curcumin --- biomaterials --- chitosan --- silane coupling agent --- microfiber --- crosslinking --- mechanical strength --- block copolymers --- renewable resources --- RAFT --- alkyl lactate --- PSA --- terpenoid --- exo-methylene --- conjugated diene --- renewable monomer --- biobased polymer --- radical polymerization --- copolymerization --- living radical polymerization --- RAFT polymerization --- heat-resistant polymer --- n/a


Book
Tribological Behavior of Functional Surface: Models and Methods
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Material loss due to wear and corrosion and high resistance to motion generate high costs. Therefore, minimizing friction and wear is a problem of great importance. This book is focused on the tribological behavior of functional surfaces. It contains information regarding the improvement of tribological properties of sliding elements via changes in surface topography. Tribological impacts of surface texturing depending on the creation of dimples on co-acting surfaces are also discussed. The effects of various coatings on the minimization of friction and wear and corrosion resistance are also studied. Friction can be also reduced by introducing a new oil.


Book
Coatings Imparting Multifunctional Properties to Materials
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Coatings are traditionally used to protect materials from corrosion and erosion and improve the equipment’s performance. At present, there are coatings that provide materials with new properties, for example, biocidal, hydrophobic and self-cleaning properties. A promising area of materials science is the development of "smart" coatings that simultaneously give materials several new properties. The coating propertiess are determined by the coatings’ material, the structure and the properties of the substrate surface, and the methods of forming the coatings. This book contains the results of the latest research on the formation of coatings that impart complexes of new properties to various materials.

Keywords

Technology: general issues --- cellulose textile material --- microencapsulation --- antibacterial --- antimycotic --- wound healing properties --- silver --- polyelectrolyte microcapsules --- multifunctional --- carbon soot coatings --- super-nonwettable --- nanostructured polymer coating --- polyacrylate dispersion --- nanodispersed fillers --- graft copolymers --- composite parts of a garment --- superhydrophobic --- oleophobic --- click chemistry --- silica --- fluorinated epoxy --- coatings --- polypropylene yarn --- polytetrafluoroethylene --- magnetite nanoparticles --- barrier antimicrobial properties --- surface electrical resistance --- chemical resistance --- tensile strength --- alumina (Al2O3) coating --- self-cleaning --- composite coating --- cellulose textile material --- microencapsulation --- antibacterial --- antimycotic --- wound healing properties --- silver --- polyelectrolyte microcapsules --- multifunctional --- carbon soot coatings --- super-nonwettable --- nanostructured polymer coating --- polyacrylate dispersion --- nanodispersed fillers --- graft copolymers --- composite parts of a garment --- superhydrophobic --- oleophobic --- click chemistry --- silica --- fluorinated epoxy --- coatings --- polypropylene yarn --- polytetrafluoroethylene --- magnetite nanoparticles --- barrier antimicrobial properties --- surface electrical resistance --- chemical resistance --- tensile strength --- alumina (Al2O3) coating --- self-cleaning --- composite coating


Book
Coatings Imparting Multifunctional Properties to Materials
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Coatings are traditionally used to protect materials from corrosion and erosion and improve the equipment’s performance. At present, there are coatings that provide materials with new properties, for example, biocidal, hydrophobic and self-cleaning properties. A promising area of materials science is the development of "smart" coatings that simultaneously give materials several new properties. The coating propertiess are determined by the coatings’ material, the structure and the properties of the substrate surface, and the methods of forming the coatings. This book contains the results of the latest research on the formation of coatings that impart complexes of new properties to various materials.


Book
Natural Polymers and Biopolymers II
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

BioPolymers could be either natural polymers – polymer naturally occurring in Nature, such as cellulose or starch…, or biobased polymers that are artificially synthesized from natural resources. Since the late 1990s, the polymer industry has faced two serious problems: global warming and anticipation of limitation to the access to fossil resources. One solution consists in the use of sustainable resources instead of fossil-based resources. Hence, biomass feedstocks are a promising resource and biopolymers are one of the most dynamic polymer area. Additionally, biodegradability is a special functionality conferred to a material, bio-based or not. Very recently, facing the awareness of the volumes of plastic wastes, biodegradable polymers are gaining increasing attention from the market and industrial community. This special issue of Molecules deals with the current scientific and industrial challenges of Natural and Biobased Polymers, through the access of new biobased monomers, improved thermo-mechanical properties, and by substitution of harmful substances. This themed issue can be considered as collection of highlights within the field of Natural Polymers and Biobased Polymers which clearly demonstrate the increased interest in this field. We hope that this will inspire researchers to further develop this area and thus contribute to futures more sustainable society.”

Keywords

Research & information: general --- imine --- epoxide --- amine --- thermoset --- bio-based --- biobased epoxy --- cardanol --- cationic photocuring --- microfibrillated cellulose --- biobased composites --- sustainable materials --- biomass --- green chemistry --- mechanims --- humins --- epoxy resins --- thermosets --- kinetics --- ring-opening --- biobased --- polyurethane foam --- catalyst --- polycarbonates --- furan-maleimide --- Diels-Alder --- fatty acids --- melt extrusion --- 3D printing --- cellulose nanofibrils --- biocomposite filaments --- physical property --- drained and undrained peatlands --- peats --- humic acids --- thermal --- paramagnetic and optical properties --- acetylated starch --- etherified starch --- chemical composition --- macromolecular characteristics --- surface characterization --- lignin --- fractionation --- biobased polymers --- solvent extraction --- membrane-assisted ultrafiltration --- plant oil-based monomers --- mixed micelles --- methyl-β-cyclodextrin inclusion complex --- emulsion polymerization --- nanocellulose --- polymer --- coating --- textile --- adhesion --- biobased monomer --- photoinduced-polymerization --- eugenol-derived methacrylate --- bacterial cellulose --- alginate --- gelatin --- curcumin --- biomaterials --- chitosan --- silane coupling agent --- microfiber --- crosslinking --- mechanical strength --- block copolymers --- renewable resources --- RAFT --- alkyl lactate --- PSA --- terpenoid --- exo-methylene --- conjugated diene --- renewable monomer --- biobased polymer --- radical polymerization --- copolymerization --- living radical polymerization --- RAFT polymerization --- heat-resistant polymer --- imine --- epoxide --- amine --- thermoset --- bio-based --- biobased epoxy --- cardanol --- cationic photocuring --- microfibrillated cellulose --- biobased composites --- sustainable materials --- biomass --- green chemistry --- mechanims --- humins --- epoxy resins --- thermosets --- kinetics --- ring-opening --- biobased --- polyurethane foam --- catalyst --- polycarbonates --- furan-maleimide --- Diels-Alder --- fatty acids --- melt extrusion --- 3D printing --- cellulose nanofibrils --- biocomposite filaments --- physical property --- drained and undrained peatlands --- peats --- humic acids --- thermal --- paramagnetic and optical properties --- acetylated starch --- etherified starch --- chemical composition --- macromolecular characteristics --- surface characterization --- lignin --- fractionation --- biobased polymers --- solvent extraction --- membrane-assisted ultrafiltration --- plant oil-based monomers --- mixed micelles --- methyl-β-cyclodextrin inclusion complex --- emulsion polymerization --- nanocellulose --- polymer --- coating --- textile --- adhesion --- biobased monomer --- photoinduced-polymerization --- eugenol-derived methacrylate --- bacterial cellulose --- alginate --- gelatin --- curcumin --- biomaterials --- chitosan --- silane coupling agent --- microfiber --- crosslinking --- mechanical strength --- block copolymers --- renewable resources --- RAFT --- alkyl lactate --- PSA --- terpenoid --- exo-methylene --- conjugated diene --- renewable monomer --- biobased polymer --- radical polymerization --- copolymerization --- living radical polymerization --- RAFT polymerization --- heat-resistant polymer


Book
Advances in Underground Energy Storage for Renewable Energy Sources
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Energy storage currently plays an important role in the electricity systems. Innovative energy storage solutions will play an important role in ensuring the integration of renewable energy sources into the electrical grids in the European Union. Pumped storage hydropower systems are the most mature technology of energy storage and account for over 90% of installed energy storage capacity worldwide. However, PSH technology is constrained by topography and land availability in flat areas. In addition, PSH plants are controversial due to their impacts on landscape, land use and the environment. Conversely, underground energy storage systems may be an interesting alternative to increase the energy storage capacity with low environmental impacts. To help address and resolve these types of questions, this book is comprised of eleven chapters that explore new ways of energy storage reducing the environmental impacts caused by the installation of conventional energy storage systems, as well as to increase the energy storage capacity and promote the use of disused underground space, such as abandoned mines and quarries. The chapters included in this book cover a wide spectrum of issues related to underground energy storage systems. Advances in underground pumped storage hydropower, compressed air energy storage and hydrogen energy storage systems are presented. Finally, we would like to thank both the MDPI publishing and editorial staff for their excellent work and support, as well as the authors who collaborated with your interesting research works.

Listing 1 - 10 of 48 << page
of 5
>>
Sort by