Listing 1 - 10 of 48 | << page >> |
Sort by
|
Choose an application
"The book summaries recent research progress on bioepoxy polymers as well as their blends and composites. It covers aspects from synthesis, processing, various characterization techniques to broad spectrum of applications. It provides a correlation of physical properties with macro, micro and nanostructures of the materials. Moreover, research trends, future directions and opportunities are also discussed"--
Choose an application
Coatings are traditionally used to protect materials from corrosion and erosion and improve the equipment’s performance. At present, there are coatings that provide materials with new properties, for example, biocidal, hydrophobic and self-cleaning properties. A promising area of materials science is the development of "smart" coatings that simultaneously give materials several new properties. The coating propertiess are determined by the coatings’ material, the structure and the properties of the substrate surface, and the methods of forming the coatings. This book contains the results of the latest research on the formation of coatings that impart complexes of new properties to various materials.
cellulose textile material --- microencapsulation --- antibacterial --- antimycotic --- wound healing properties --- silver --- polyelectrolyte microcapsules --- multifunctional --- carbon soot coatings --- super-nonwettable --- nanostructured polymer coating --- polyacrylate dispersion --- nanodispersed fillers --- graft copolymers --- composite parts of a garment --- superhydrophobic --- oleophobic --- click chemistry --- silica --- fluorinated epoxy --- coatings --- polypropylene yarn --- polytetrafluoroethylene --- magnetite nanoparticles --- barrier antimicrobial properties --- surface electrical resistance --- chemical resistance --- tensile strength --- alumina (Al2O3) coating --- self-cleaning --- composite coating --- n/a
Choose an application
BioPolymers could be either natural polymers – polymer naturally occurring in Nature, such as cellulose or starch…, or biobased polymers that are artificially synthesized from natural resources. Since the late 1990s, the polymer industry has faced two serious problems: global warming and anticipation of limitation to the access to fossil resources. One solution consists in the use of sustainable resources instead of fossil-based resources. Hence, biomass feedstocks are a promising resource and biopolymers are one of the most dynamic polymer area. Additionally, biodegradability is a special functionality conferred to a material, bio-based or not. Very recently, facing the awareness of the volumes of plastic wastes, biodegradable polymers are gaining increasing attention from the market and industrial community. This special issue of Molecules deals with the current scientific and industrial challenges of Natural and Biobased Polymers, through the access of new biobased monomers, improved thermo-mechanical properties, and by substitution of harmful substances. This themed issue can be considered as collection of highlights within the field of Natural Polymers and Biobased Polymers which clearly demonstrate the increased interest in this field. We hope that this will inspire researchers to further develop this area and thus contribute to futures more sustainable society.”
Research & information: general --- imine --- epoxide --- amine --- thermoset --- bio-based --- biobased epoxy --- cardanol --- cationic photocuring --- microfibrillated cellulose --- biobased composites --- sustainable materials --- biomass --- green chemistry --- mechanims --- humins --- epoxy resins --- thermosets --- kinetics --- ring-opening --- biobased --- polyurethane foam --- catalyst --- polycarbonates --- furan-maleimide --- Diels-Alder --- fatty acids --- melt extrusion --- 3D printing --- cellulose nanofibrils --- biocomposite filaments --- physical property --- drained and undrained peatlands --- peats --- humic acids --- thermal --- paramagnetic and optical properties --- acetylated starch --- etherified starch --- chemical composition --- macromolecular characteristics --- surface characterization --- lignin --- fractionation --- biobased polymers --- solvent extraction --- membrane-assisted ultrafiltration --- plant oil-based monomers --- mixed micelles --- methyl-β-cyclodextrin inclusion complex --- emulsion polymerization --- nanocellulose --- polymer --- coating --- textile --- adhesion --- biobased monomer --- photoinduced-polymerization --- eugenol-derived methacrylate --- bacterial cellulose --- alginate --- gelatin --- curcumin --- biomaterials --- chitosan --- silane coupling agent --- microfiber --- crosslinking --- mechanical strength --- block copolymers --- renewable resources --- RAFT --- alkyl lactate --- PSA --- terpenoid --- exo-methylene --- conjugated diene --- renewable monomer --- biobased polymer --- radical polymerization --- copolymerization --- living radical polymerization --- RAFT polymerization --- heat-resistant polymer --- n/a
Choose an application
Material loss due to wear and corrosion and high resistance to motion generate high costs. Therefore, minimizing friction and wear is a problem of great importance. This book is focused on the tribological behavior of functional surfaces. It contains information regarding the improvement of tribological properties of sliding elements via changes in surface topography. Tribological impacts of surface texturing depending on the creation of dimples on co-acting surfaces are also discussed. The effects of various coatings on the minimization of friction and wear and corrosion resistance are also studied. Friction can be also reduced by introducing a new oil.
Technology: general issues --- Plasma Electrolytic Oxidation (PEO) --- Ti-6Al-4V --- friction --- wear --- thermo-elastohydrodynamic lubrication --- DLC-coating --- microtexturing --- surface modification --- friction mechanisms --- energy efficiency --- internal combustion engine --- cam/tappet-contact --- surface --- roughness --- failure analysis --- contact modeling --- statistic approach --- amorphous coating --- laser cladding --- supersonic plasma spraying --- microstructure --- corrosion resistance --- wear resistance --- turbomachinery --- contacts --- rotor/stator interactions --- abradable coating --- thermal effects --- surface topography --- friction reduction --- ionic liquid --- lubrication --- surface chemistry --- tetrahedral amorphous carbon --- surface texturing --- pin-on-disc --- conformal contact --- friction force --- lubricated sliding --- sliding friction --- carbon-based coatings --- laser surface texturing --- low-temperature --- composite coating --- epoxy–PTFE --- modified TiO2 --- tribological properties --- detonation gun spray --- structure --- carbolized titanium --- hardness --- phase --- adhesion --- heat treatment --- tribocorrosion --- PVD --- Cr/CrN --- wear mechanics --- n/a --- epoxy-PTFE
Choose an application
BioPolymers could be either natural polymers – polymer naturally occurring in Nature, such as cellulose or starch…, or biobased polymers that are artificially synthesized from natural resources. Since the late 1990s, the polymer industry has faced two serious problems: global warming and anticipation of limitation to the access to fossil resources. One solution consists in the use of sustainable resources instead of fossil-based resources. Hence, biomass feedstocks are a promising resource and biopolymers are one of the most dynamic polymer area. Additionally, biodegradability is a special functionality conferred to a material, bio-based or not. Very recently, facing the awareness of the volumes of plastic wastes, biodegradable polymers are gaining increasing attention from the market and industrial community. This special issue of Molecules deals with the current scientific and industrial challenges of Natural and Biobased Polymers, through the access of new biobased monomers, improved thermo-mechanical properties, and by substitution of harmful substances. This themed issue can be considered as collection of highlights within the field of Natural Polymers and Biobased Polymers which clearly demonstrate the increased interest in this field. We hope that this will inspire researchers to further develop this area and thus contribute to futures more sustainable society.”
imine --- epoxide --- amine --- thermoset --- bio-based --- biobased epoxy --- cardanol --- cationic photocuring --- microfibrillated cellulose --- biobased composites --- sustainable materials --- biomass --- green chemistry --- mechanims --- humins --- epoxy resins --- thermosets --- kinetics --- ring-opening --- biobased --- polyurethane foam --- catalyst --- polycarbonates --- furan-maleimide --- Diels-Alder --- fatty acids --- melt extrusion --- 3D printing --- cellulose nanofibrils --- biocomposite filaments --- physical property --- drained and undrained peatlands --- peats --- humic acids --- thermal --- paramagnetic and optical properties --- acetylated starch --- etherified starch --- chemical composition --- macromolecular characteristics --- surface characterization --- lignin --- fractionation --- biobased polymers --- solvent extraction --- membrane-assisted ultrafiltration --- plant oil-based monomers --- mixed micelles --- methyl-β-cyclodextrin inclusion complex --- emulsion polymerization --- nanocellulose --- polymer --- coating --- textile --- adhesion --- biobased monomer --- photoinduced-polymerization --- eugenol-derived methacrylate --- bacterial cellulose --- alginate --- gelatin --- curcumin --- biomaterials --- chitosan --- silane coupling agent --- microfiber --- crosslinking --- mechanical strength --- block copolymers --- renewable resources --- RAFT --- alkyl lactate --- PSA --- terpenoid --- exo-methylene --- conjugated diene --- renewable monomer --- biobased polymer --- radical polymerization --- copolymerization --- living radical polymerization --- RAFT polymerization --- heat-resistant polymer --- n/a
Choose an application
Material loss due to wear and corrosion and high resistance to motion generate high costs. Therefore, minimizing friction and wear is a problem of great importance. This book is focused on the tribological behavior of functional surfaces. It contains information regarding the improvement of tribological properties of sliding elements via changes in surface topography. Tribological impacts of surface texturing depending on the creation of dimples on co-acting surfaces are also discussed. The effects of various coatings on the minimization of friction and wear and corrosion resistance are also studied. Friction can be also reduced by introducing a new oil.
Plasma Electrolytic Oxidation (PEO) --- Ti-6Al-4V --- friction --- wear --- thermo-elastohydrodynamic lubrication --- DLC-coating --- microtexturing --- surface modification --- friction mechanisms --- energy efficiency --- internal combustion engine --- cam/tappet-contact --- surface --- roughness --- failure analysis --- contact modeling --- statistic approach --- amorphous coating --- laser cladding --- supersonic plasma spraying --- microstructure --- corrosion resistance --- wear resistance --- turbomachinery --- contacts --- rotor/stator interactions --- abradable coating --- thermal effects --- surface topography --- friction reduction --- ionic liquid --- lubrication --- surface chemistry --- tetrahedral amorphous carbon --- surface texturing --- pin-on-disc --- conformal contact --- friction force --- lubricated sliding --- sliding friction --- carbon-based coatings --- laser surface texturing --- low-temperature --- composite coating --- epoxy–PTFE --- modified TiO2 --- tribological properties --- detonation gun spray --- structure --- carbolized titanium --- hardness --- phase --- adhesion --- heat treatment --- tribocorrosion --- PVD --- Cr/CrN --- wear mechanics --- n/a --- epoxy-PTFE
Choose an application
Coatings are traditionally used to protect materials from corrosion and erosion and improve the equipment’s performance. At present, there are coatings that provide materials with new properties, for example, biocidal, hydrophobic and self-cleaning properties. A promising area of materials science is the development of "smart" coatings that simultaneously give materials several new properties. The coating propertiess are determined by the coatings’ material, the structure and the properties of the substrate surface, and the methods of forming the coatings. This book contains the results of the latest research on the formation of coatings that impart complexes of new properties to various materials.
Technology: general issues --- cellulose textile material --- microencapsulation --- antibacterial --- antimycotic --- wound healing properties --- silver --- polyelectrolyte microcapsules --- multifunctional --- carbon soot coatings --- super-nonwettable --- nanostructured polymer coating --- polyacrylate dispersion --- nanodispersed fillers --- graft copolymers --- composite parts of a garment --- superhydrophobic --- oleophobic --- click chemistry --- silica --- fluorinated epoxy --- coatings --- polypropylene yarn --- polytetrafluoroethylene --- magnetite nanoparticles --- barrier antimicrobial properties --- surface electrical resistance --- chemical resistance --- tensile strength --- alumina (Al2O3) coating --- self-cleaning --- composite coating --- cellulose textile material --- microencapsulation --- antibacterial --- antimycotic --- wound healing properties --- silver --- polyelectrolyte microcapsules --- multifunctional --- carbon soot coatings --- super-nonwettable --- nanostructured polymer coating --- polyacrylate dispersion --- nanodispersed fillers --- graft copolymers --- composite parts of a garment --- superhydrophobic --- oleophobic --- click chemistry --- silica --- fluorinated epoxy --- coatings --- polypropylene yarn --- polytetrafluoroethylene --- magnetite nanoparticles --- barrier antimicrobial properties --- surface electrical resistance --- chemical resistance --- tensile strength --- alumina (Al2O3) coating --- self-cleaning --- composite coating
Choose an application
Coatings are traditionally used to protect materials from corrosion and erosion and improve the equipment’s performance. At present, there are coatings that provide materials with new properties, for example, biocidal, hydrophobic and self-cleaning properties. A promising area of materials science is the development of "smart" coatings that simultaneously give materials several new properties. The coating propertiess are determined by the coatings’ material, the structure and the properties of the substrate surface, and the methods of forming the coatings. This book contains the results of the latest research on the formation of coatings that impart complexes of new properties to various materials.
Technology: general issues --- cellulose textile material --- microencapsulation --- antibacterial --- antimycotic --- wound healing properties --- silver --- polyelectrolyte microcapsules --- multifunctional --- carbon soot coatings --- super-nonwettable --- nanostructured polymer coating --- polyacrylate dispersion --- nanodispersed fillers --- graft copolymers --- composite parts of a garment --- superhydrophobic --- oleophobic --- click chemistry --- silica --- fluorinated epoxy --- coatings --- polypropylene yarn --- polytetrafluoroethylene --- magnetite nanoparticles --- barrier antimicrobial properties --- surface electrical resistance --- chemical resistance --- tensile strength --- alumina (Al2O3) coating --- self-cleaning --- composite coating --- n/a
Choose an application
BioPolymers could be either natural polymers – polymer naturally occurring in Nature, such as cellulose or starch…, or biobased polymers that are artificially synthesized from natural resources. Since the late 1990s, the polymer industry has faced two serious problems: global warming and anticipation of limitation to the access to fossil resources. One solution consists in the use of sustainable resources instead of fossil-based resources. Hence, biomass feedstocks are a promising resource and biopolymers are one of the most dynamic polymer area. Additionally, biodegradability is a special functionality conferred to a material, bio-based or not. Very recently, facing the awareness of the volumes of plastic wastes, biodegradable polymers are gaining increasing attention from the market and industrial community. This special issue of Molecules deals with the current scientific and industrial challenges of Natural and Biobased Polymers, through the access of new biobased monomers, improved thermo-mechanical properties, and by substitution of harmful substances. This themed issue can be considered as collection of highlights within the field of Natural Polymers and Biobased Polymers which clearly demonstrate the increased interest in this field. We hope that this will inspire researchers to further develop this area and thus contribute to futures more sustainable society.”
Research & information: general --- imine --- epoxide --- amine --- thermoset --- bio-based --- biobased epoxy --- cardanol --- cationic photocuring --- microfibrillated cellulose --- biobased composites --- sustainable materials --- biomass --- green chemistry --- mechanims --- humins --- epoxy resins --- thermosets --- kinetics --- ring-opening --- biobased --- polyurethane foam --- catalyst --- polycarbonates --- furan-maleimide --- Diels-Alder --- fatty acids --- melt extrusion --- 3D printing --- cellulose nanofibrils --- biocomposite filaments --- physical property --- drained and undrained peatlands --- peats --- humic acids --- thermal --- paramagnetic and optical properties --- acetylated starch --- etherified starch --- chemical composition --- macromolecular characteristics --- surface characterization --- lignin --- fractionation --- biobased polymers --- solvent extraction --- membrane-assisted ultrafiltration --- plant oil-based monomers --- mixed micelles --- methyl-β-cyclodextrin inclusion complex --- emulsion polymerization --- nanocellulose --- polymer --- coating --- textile --- adhesion --- biobased monomer --- photoinduced-polymerization --- eugenol-derived methacrylate --- bacterial cellulose --- alginate --- gelatin --- curcumin --- biomaterials --- chitosan --- silane coupling agent --- microfiber --- crosslinking --- mechanical strength --- block copolymers --- renewable resources --- RAFT --- alkyl lactate --- PSA --- terpenoid --- exo-methylene --- conjugated diene --- renewable monomer --- biobased polymer --- radical polymerization --- copolymerization --- living radical polymerization --- RAFT polymerization --- heat-resistant polymer --- imine --- epoxide --- amine --- thermoset --- bio-based --- biobased epoxy --- cardanol --- cationic photocuring --- microfibrillated cellulose --- biobased composites --- sustainable materials --- biomass --- green chemistry --- mechanims --- humins --- epoxy resins --- thermosets --- kinetics --- ring-opening --- biobased --- polyurethane foam --- catalyst --- polycarbonates --- furan-maleimide --- Diels-Alder --- fatty acids --- melt extrusion --- 3D printing --- cellulose nanofibrils --- biocomposite filaments --- physical property --- drained and undrained peatlands --- peats --- humic acids --- thermal --- paramagnetic and optical properties --- acetylated starch --- etherified starch --- chemical composition --- macromolecular characteristics --- surface characterization --- lignin --- fractionation --- biobased polymers --- solvent extraction --- membrane-assisted ultrafiltration --- plant oil-based monomers --- mixed micelles --- methyl-β-cyclodextrin inclusion complex --- emulsion polymerization --- nanocellulose --- polymer --- coating --- textile --- adhesion --- biobased monomer --- photoinduced-polymerization --- eugenol-derived methacrylate --- bacterial cellulose --- alginate --- gelatin --- curcumin --- biomaterials --- chitosan --- silane coupling agent --- microfiber --- crosslinking --- mechanical strength --- block copolymers --- renewable resources --- RAFT --- alkyl lactate --- PSA --- terpenoid --- exo-methylene --- conjugated diene --- renewable monomer --- biobased polymer --- radical polymerization --- copolymerization --- living radical polymerization --- RAFT polymerization --- heat-resistant polymer
Choose an application
Energy storage currently plays an important role in the electricity systems. Innovative energy storage solutions will play an important role in ensuring the integration of renewable energy sources into the electrical grids in the European Union. Pumped storage hydropower systems are the most mature technology of energy storage and account for over 90% of installed energy storage capacity worldwide. However, PSH technology is constrained by topography and land availability in flat areas. In addition, PSH plants are controversial due to their impacts on landscape, land use and the environment. Conversely, underground energy storage systems may be an interesting alternative to increase the energy storage capacity with low environmental impacts. To help address and resolve these types of questions, this book is comprised of eleven chapters that explore new ways of energy storage reducing the environmental impacts caused by the installation of conventional energy storage systems, as well as to increase the energy storage capacity and promote the use of disused underground space, such as abandoned mines and quarries. The chapters included in this book cover a wide spectrum of issues related to underground energy storage systems. Advances in underground pumped storage hydropower, compressed air energy storage and hydrogen energy storage systems are presented. Finally, we would like to thank both the MDPI publishing and editorial staff for their excellent work and support, as well as the authors who collaborated with your interesting research works.
Research & information: general --- Technology: general issues --- energy storage --- underground pumped storage --- economic feasibility --- ancillary services --- day-ahead market --- underground space --- mining structures --- underground reservoir --- empirical analysis --- numerical modelling --- hydropower plants --- hydrogen --- underground storage --- leakage --- monitoring --- protocol --- helium --- aquifer --- renewable energy --- hydropower --- mine --- groundwater --- environmental impacts --- efficiency --- wind energy --- photovoltaics --- wind curtailment --- mesoscale atmospheric model --- hydro-pumped storage --- abandoned mines --- underground reservoirs --- CAES --- analytical modelling --- sealing layer --- environmental impact --- hydrogen storage --- sealing liners --- Liner Rock Caverns --- epoxy resin --- hydrogen permeability --- exergy --- salt caverns --- pumped storage hydropower --- energy storage system --- quarry --- open pit --- hydrochemistry --- n/a
Listing 1 - 10 of 48 | << page >> |
Sort by
|