Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2020 (4)

Listing 1 - 4 of 4
Sort by

Book
Mesoporous Materials for Drug Delivery and Theranostics
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mesoporous materials are capturing great interest thanks to their exceptional surface area, uniform and tunable pore size, ease surface functionalization, thus enabling broad series of intervention in the field of nanomedicine. Since many years, these aspects foster a deep investigation on mesoporous nanoparticles, to design and fabricate biocompatible, smart and stimuli-responsive nanotools for controlled drug- or gene-delivery, theranostics applications, in particular for cancer therapy, and tissue engineering. This Book is thus dedicated to the most recent advances in the field, collecting research papers and reviews. It spans from the synthesis and characterization of the mesoporous material, especially those made of silica, silicon and bioactive glasses, to their functionalization with smart gate-keepers, reporter molecules or targeting ligands, up to their in-vitro applications in the nanomedicine field.


Book
Mesoporous Materials for Drug Delivery and Theranostics
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mesoporous materials are capturing great interest thanks to their exceptional surface area, uniform and tunable pore size, ease surface functionalization, thus enabling broad series of intervention in the field of nanomedicine. Since many years, these aspects foster a deep investigation on mesoporous nanoparticles, to design and fabricate biocompatible, smart and stimuli-responsive nanotools for controlled drug- or gene-delivery, theranostics applications, in particular for cancer therapy, and tissue engineering. This Book is thus dedicated to the most recent advances in the field, collecting research papers and reviews. It spans from the synthesis and characterization of the mesoporous material, especially those made of silica, silicon and bioactive glasses, to their functionalization with smart gate-keepers, reporter molecules or targeting ligands, up to their in-vitro applications in the nanomedicine field.

Keywords

Technology: general issues --- polyurethane --- injectable hydrogels --- ion/drug delivery --- mesoporous bioactive glasses --- tissue regeneration --- mesoporous silica --- therapeutic biomolecules --- proteins --- peptides --- nucleic acids --- glycans --- nanoporous silicon --- gold nanoparticles --- drug delivery --- cancer cells --- theranostics --- mesoporous silica nanoparticles --- core-shell --- surface functionalization --- cell targeting --- size-dependent delivery --- antitumoral microRNA (miRNA) --- confocal microscopy --- tumor targeting --- stimuli responsive --- multimodal decorations --- targeted and controlled cargo release --- cancer therapy and diagnosis --- alginate-poloxamer copolymer --- silk fibroin --- dual network hydrogel --- mesoporous bioactive glass --- insulin-like growth factor-1 --- electrostatic gating --- nanofluidic diffusion --- controlled drug release --- silicon membrane --- smart drug delivery --- three-dimensional porous scaffolds --- electron beam melting --- selective laser sintering --- stereolithography --- electrospinning --- two-photon polymerization --- osteogenesis --- antibiotics --- anti-inflammatory --- polyurethane --- injectable hydrogels --- ion/drug delivery --- mesoporous bioactive glasses --- tissue regeneration --- mesoporous silica --- therapeutic biomolecules --- proteins --- peptides --- nucleic acids --- glycans --- nanoporous silicon --- gold nanoparticles --- drug delivery --- cancer cells --- theranostics --- mesoporous silica nanoparticles --- core-shell --- surface functionalization --- cell targeting --- size-dependent delivery --- antitumoral microRNA (miRNA) --- confocal microscopy --- tumor targeting --- stimuli responsive --- multimodal decorations --- targeted and controlled cargo release --- cancer therapy and diagnosis --- alginate-poloxamer copolymer --- silk fibroin --- dual network hydrogel --- mesoporous bioactive glass --- insulin-like growth factor-1 --- electrostatic gating --- nanofluidic diffusion --- controlled drug release --- silicon membrane --- smart drug delivery --- three-dimensional porous scaffolds --- electron beam melting --- selective laser sintering --- stereolithography --- electrospinning --- two-photon polymerization --- osteogenesis --- antibiotics --- anti-inflammatory


Book
Mesoporous Materials for Drug Delivery and Theranostics
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mesoporous materials are capturing great interest thanks to their exceptional surface area, uniform and tunable pore size, ease surface functionalization, thus enabling broad series of intervention in the field of nanomedicine. Since many years, these aspects foster a deep investigation on mesoporous nanoparticles, to design and fabricate biocompatible, smart and stimuli-responsive nanotools for controlled drug- or gene-delivery, theranostics applications, in particular for cancer therapy, and tissue engineering. This Book is thus dedicated to the most recent advances in the field, collecting research papers and reviews. It spans from the synthesis and characterization of the mesoporous material, especially those made of silica, silicon and bioactive glasses, to their functionalization with smart gate-keepers, reporter molecules or targeting ligands, up to their in-vitro applications in the nanomedicine field.


Book
Polymeric Systems as Antimicrobial or Antifouling Agents
Authors: ---
ISBN: 3039284576 3039284568 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The rapid increase in the emergence of antibiotic-resistant bacterial strains, combined with a dwindling rate of discovery of novel antibiotic molecules, has created an alarming issue worldwide. Although the occurrence of resistance in microbes is a natural process, the overuse of antibiotics is known to increase the rate of resistance evolution. Under antibiotic treatment, susceptible bacteria inevitably die, while resistant microorganisms proliferate under reduced competition. Therefore, the out-of-control use of antibiotics eliminates drug-susceptible species that would naturally limit the expansion of resistant species. In addition, the ability of many microbial species to grow as a biofilm has further complicated the treatment of infections with conventional antibiotics. A number of corrective measures are currently being explored to reverse or slow antibiotic resistance evolution, Among which one of the most promising solutions is the development of polymer-based antimicrobial compounds. In this Special Issue, different polymer systems able to prevent or treat biofilm formation, including cationic polymers, antibacterial peptide-mimetic polymers, polymers or composites able to load and release bioactive molecules, and antifouling polymers able to repel microbes by physical or chemical mechanisms are reported. Their applications in the design and fabrication of medical devices, in food packaging, and as drug carriers is investigated.

Keywords

imidization --- antifouling materials --- n/a --- UV-induced polymerization --- 2-hydroxyethyl methacrylate --- additive manufacturing --- antimicrobial resistance --- biofilm --- antibacterial peptides --- ocular infections --- food shelf-life --- hemolytic activity --- polyamide 11 --- coatings from nanoparticles --- polymeric surfaces --- microbial biofilm --- ?-chymotrypsin --- antimicrobial properties --- linear low-density polyethylene --- drug delivery systems --- ESKAPE pathogens --- halictine --- composites --- foodborne pathogens --- layered double hydroxides --- cuprous oxide nanoparticles --- multifunctional hybrid systems --- microbicidal coatings --- adhesives --- acrylates --- quaternization --- polymeric biocide --- biocompatible polymer --- surface functionalization --- sol-gel preparation --- antifouling --- antimicrobial peptides --- polymerizable quaternary ammonium salts --- antibiofilm activity --- polymeric films --- antibacterial activity --- bionanocomposites --- cationic polymers --- Escherichia coli --- antibacterial --- biofilm methods --- drug delivery --- circular dichroism --- coatings wettability --- antimicrobial polymers --- fluorescence --- Staphylococcus aureus --- biofilm analysis --- polyethylene glycol --- copolymerization --- dynamic light scattering --- physiological salt --- copper paint --- medical device-related infections --- olive mill wastewater --- Acinetobacter baumannii --- anti-biofilm surface --- additives --- periodontitis --- periodontal biofilms --- antimicrobial peptide --- segmented polyurethanes --- plastic materials --- biocompatible systems --- bactericidal coatings --- bacteria viability --- wound dressings --- ordered mesoporous silica --- quaternary ammonium --- multidrug-resistant --- antimicrobial polymer --- biofilm devices --- biofilm on contact lenses --- water disinfection --- amorphous materials --- polymers --- infrared spectroscopy --- quaternary ammonium salts --- lipopeptides --- antibacterial properties --- thermal stability --- proteinase --- active packaging --- antibacterial polymers --- anti-biofilm surfaces --- 3D printing --- drug carrier --- persister cells

Listing 1 - 4 of 4
Sort by