Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (7)


Language

English (7)


Year
From To Submit

2020 (7)

Listing 1 - 7 of 7
Sort by

Book
Nanostructured Materials based on Noble Metals for Advanced Biological Applications
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue “Nanostructured Materials Based on Noble Metals for Advanced Biological Applications” highlights the recent progress in gold and silver nanomaterials preparation/synthesis as well as their innovative applications in advanced applications, such as in nanomedicine and nanosensors. It is nowadays generally accepted that nanostructured noble metals allow the production of highly competitive materials. In fact, a specific design and rather simple and reliable preparation techniques can be used to obtain optimized material uses and possibilities for their reusability. One expects amazing future developments for these nanotechnologies from research laboratories to key industrial areas. The Guest Editor and the MDPI staff are therefore pleased to offer this Special Issue to interested readers, including researchers, graduate and PhD students as well as postdoctoral researchers, but also to the entire community interested in the wide world of nanomaterials.


Book
Nanostructured Materials based on Noble Metals for Advanced Biological Applications
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue “Nanostructured Materials Based on Noble Metals for Advanced Biological Applications” highlights the recent progress in gold and silver nanomaterials preparation/synthesis as well as their innovative applications in advanced applications, such as in nanomedicine and nanosensors. It is nowadays generally accepted that nanostructured noble metals allow the production of highly competitive materials. In fact, a specific design and rather simple and reliable preparation techniques can be used to obtain optimized material uses and possibilities for their reusability. One expects amazing future developments for these nanotechnologies from research laboratories to key industrial areas. The Guest Editor and the MDPI staff are therefore pleased to offer this Special Issue to interested readers, including researchers, graduate and PhD students as well as postdoctoral researchers, but also to the entire community interested in the wide world of nanomaterials.


Book
Metal Matrix Composites
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Metal-based composites represent a unique way of tailoring the properties of metals, through the selection of type, size, and amount of reinforcement. In this way, the properties of metallic matrices can be adjusted depending on end applications. In view of the dynamic capabilities they can exhibit, this Special Issue will cover all aspects of metal matrix composites: synthesis (including solid, liquid, two-phase and 3D printing); secondary processing; properties (tensile, compressive, fatigue, impact, creep, tribological, etc.); corrosion behavior; and joining techniques. The main objective is to share the latest results on metal matrix composites with the research community worldwide.

Keywords

History of engineering & technology --- Mg-3Al-0.4Ce alloy --- nano ZnO particles --- uniform distribution --- strength --- titanium matrix composite --- constitutive model --- interfacial debonding --- high temperature --- elastoplastic properties --- nano-sized SiCp --- aluminum matrix composites --- mechanical properties --- microstructures --- Mg–Al–RE alloy --- magnesium alloy --- damping --- Al11La3 phase --- nanosize reinforcement --- spark plasma sintering --- Cu–TiC --- in-situ composites --- mechanical milling --- iron aluminum alloys --- cold/hot PM --- compressibility factor --- wear resistance --- Al-Zn-Cr alloys --- powder metallurgy --- strengthening --- extrusion --- dry sliding wear --- synthesis of core–shell metal nanoparticles --- Cu@Ag composite nanoparticle --- metal mesh --- screen printing --- touch screen panel --- tungsten composites --- tungsten-fibre-net reinforcement --- tensile strength --- metal matrix composites --- nickel --- aluminum --- carbon nanotubes --- ultrasonication --- microstructural characterization --- Magnesium --- Sm2O3 nanoparticles --- compression properties --- microstructure --- ignition --- carbon nanotube --- nanocomposite --- dispersion --- interfacial adhesion --- phase transformation --- physicomechanical properties --- nanoparticles --- metal matrix nanocomposite (MMNC) --- AlN --- magnesium alloy AM60 --- strengthening mechanisms --- in situ titanium composites --- microstructure analysis --- TiB precipitates --- 7075 Al alloy --- reduced graphene oxide --- strengthening mechanism --- metal matrix nanocomposite --- copper --- graphene --- thermal expansion coefficient --- thermal conductivity --- electrical resistance --- thixoforging --- magnesium-based composite --- fracture --- magnesium-alloy-based composite --- Halpin-Tsai-Kardos model --- deformation behavior --- composite strengthening --- fracture behavior --- magnesium --- high entropy alloy --- composite --- hardness --- compressive properties --- tricalcium phosphate --- compression --- corrosion --- n/a --- Mg-Al-RE alloy --- Cu-TiC --- synthesis of core-shell metal nanoparticles


Book
Metal Matrix Composites
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Metal-based composites represent a unique way of tailoring the properties of metals, through the selection of type, size, and amount of reinforcement. In this way, the properties of metallic matrices can be adjusted depending on end applications. In view of the dynamic capabilities they can exhibit, this Special Issue will cover all aspects of metal matrix composites: synthesis (including solid, liquid, two-phase and 3D printing); secondary processing; properties (tensile, compressive, fatigue, impact, creep, tribological, etc.); corrosion behavior; and joining techniques. The main objective is to share the latest results on metal matrix composites with the research community worldwide.

Keywords

Mg-3Al-0.4Ce alloy --- nano ZnO particles --- uniform distribution --- strength --- titanium matrix composite --- constitutive model --- interfacial debonding --- high temperature --- elastoplastic properties --- nano-sized SiCp --- aluminum matrix composites --- mechanical properties --- microstructures --- Mg–Al–RE alloy --- magnesium alloy --- damping --- Al11La3 phase --- nanosize reinforcement --- spark plasma sintering --- Cu–TiC --- in-situ composites --- mechanical milling --- iron aluminum alloys --- cold/hot PM --- compressibility factor --- wear resistance --- Al-Zn-Cr alloys --- powder metallurgy --- strengthening --- extrusion --- dry sliding wear --- synthesis of core–shell metal nanoparticles --- Cu@Ag composite nanoparticle --- metal mesh --- screen printing --- touch screen panel --- tungsten composites --- tungsten-fibre-net reinforcement --- tensile strength --- metal matrix composites --- nickel --- aluminum --- carbon nanotubes --- ultrasonication --- microstructural characterization --- Magnesium --- Sm2O3 nanoparticles --- compression properties --- microstructure --- ignition --- carbon nanotube --- nanocomposite --- dispersion --- interfacial adhesion --- phase transformation --- physicomechanical properties --- nanoparticles --- metal matrix nanocomposite (MMNC) --- AlN --- magnesium alloy AM60 --- strengthening mechanisms --- in situ titanium composites --- microstructure analysis --- TiB precipitates --- 7075 Al alloy --- reduced graphene oxide --- strengthening mechanism --- metal matrix nanocomposite --- copper --- graphene --- thermal expansion coefficient --- thermal conductivity --- electrical resistance --- thixoforging --- magnesium-based composite --- fracture --- magnesium-alloy-based composite --- Halpin-Tsai-Kardos model --- deformation behavior --- composite strengthening --- fracture behavior --- magnesium --- high entropy alloy --- composite --- hardness --- compressive properties --- tricalcium phosphate --- compression --- corrosion --- n/a --- Mg-Al-RE alloy --- Cu-TiC --- synthesis of core-shell metal nanoparticles


Book
Nanostructured Materials based on Noble Metals for Advanced Biological Applications
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue “Nanostructured Materials Based on Noble Metals for Advanced Biological Applications” highlights the recent progress in gold and silver nanomaterials preparation/synthesis as well as their innovative applications in advanced applications, such as in nanomedicine and nanosensors. It is nowadays generally accepted that nanostructured noble metals allow the production of highly competitive materials. In fact, a specific design and rather simple and reliable preparation techniques can be used to obtain optimized material uses and possibilities for their reusability. One expects amazing future developments for these nanotechnologies from research laboratories to key industrial areas. The Guest Editor and the MDPI staff are therefore pleased to offer this Special Issue to interested readers, including researchers, graduate and PhD students as well as postdoctoral researchers, but also to the entire community interested in the wide world of nanomaterials.

Keywords

Technology: general issues --- gold --- nanostructure --- EDTA tetrasodium salt --- photothermal therapy --- silver nanoparticles --- biomedical applications --- biological interactions --- biofunctional performances --- intrinsic anti-inflammatory activity --- antimicrobial efficiency --- localized surface plasmon resonance --- dip-coating --- capillary force --- exosome --- gold nanoparticles --- copper(I) complexes --- conjugates --- drug delivery --- anticancer compounds --- niosomes --- liposomes --- plasmonic materials --- nanocarriers --- Hg2+ sensors --- heavy metal sensing --- plasmonic sensors --- optical sensors --- ecosafety --- nanoparticles --- interactions --- protein corona --- nanomedicine --- biomolecules --- nanomaterials --- noble metal nanoparticles --- gold nanomaterials --- silver nanomaterials --- hybrid metal–polymer nanoparticles --- biotechnological applications --- nanomaterials for drug delivery --- nanomaterials for sensing --- gold --- nanostructure --- EDTA tetrasodium salt --- photothermal therapy --- silver nanoparticles --- biomedical applications --- biological interactions --- biofunctional performances --- intrinsic anti-inflammatory activity --- antimicrobial efficiency --- localized surface plasmon resonance --- dip-coating --- capillary force --- exosome --- gold nanoparticles --- copper(I) complexes --- conjugates --- drug delivery --- anticancer compounds --- niosomes --- liposomes --- plasmonic materials --- nanocarriers --- Hg2+ sensors --- heavy metal sensing --- plasmonic sensors --- optical sensors --- ecosafety --- nanoparticles --- interactions --- protein corona --- nanomedicine --- biomolecules --- nanomaterials --- noble metal nanoparticles --- gold nanomaterials --- silver nanomaterials --- hybrid metal–polymer nanoparticles --- biotechnological applications --- nanomaterials for drug delivery --- nanomaterials for sensing


Book
Synthesis and Applications of Nanomaterials for Photocatalysis and Electrocatalysis
Authors: ---
ISBN: 3039288326 3039288318 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Heterogeneous catalysis, exploiting photo- and electrochemical reactions, has expanded rapidly in recent decades, having undergone various developments, especially from both energetic and environmental points of view. Photocatalysis plays a pivotal role in such applications as water splitting and air/water remediation. Electrocatalysis can be found in a large array of research fields, including the development of electroanalytical sensors, wastewater treatment, and energy conversion devices (e.g., batteries, fuel and solar cells, etc.). Therefore, the fine control of the synthetic procedures, together with extensive physicochemical characterisations of the tailor-made catalytic nanomaterials, are of fundamental importance to achieving the desired results. The present book will include recent enhancements in oxide/metal nanoparticles for photocatalytic and electrocatalytic applications, especially in the fields of pollutants abatement and energy conversion.


Book
Metal Matrix Composites
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Metal-based composites represent a unique way of tailoring the properties of metals, through the selection of type, size, and amount of reinforcement. In this way, the properties of metallic matrices can be adjusted depending on end applications. In view of the dynamic capabilities they can exhibit, this Special Issue will cover all aspects of metal matrix composites: synthesis (including solid, liquid, two-phase and 3D printing); secondary processing; properties (tensile, compressive, fatigue, impact, creep, tribological, etc.); corrosion behavior; and joining techniques. The main objective is to share the latest results on metal matrix composites with the research community worldwide.

Keywords

History of engineering & technology --- Mg-3Al-0.4Ce alloy --- nano ZnO particles --- uniform distribution --- strength --- titanium matrix composite --- constitutive model --- interfacial debonding --- high temperature --- elastoplastic properties --- nano-sized SiCp --- aluminum matrix composites --- mechanical properties --- microstructures --- Mg-Al-RE alloy --- magnesium alloy --- damping --- Al11La3 phase --- nanosize reinforcement --- spark plasma sintering --- Cu-TiC --- in-situ composites --- mechanical milling --- iron aluminum alloys --- cold/hot PM --- compressibility factor --- wear resistance --- Al-Zn-Cr alloys --- powder metallurgy --- strengthening --- extrusion --- dry sliding wear --- synthesis of core-shell metal nanoparticles --- Cu@Ag composite nanoparticle --- metal mesh --- screen printing --- touch screen panel --- tungsten composites --- tungsten-fibre-net reinforcement --- tensile strength --- metal matrix composites --- nickel --- aluminum --- carbon nanotubes --- ultrasonication --- microstructural characterization --- Magnesium --- Sm2O3 nanoparticles --- compression properties --- microstructure --- ignition --- carbon nanotube --- nanocomposite --- dispersion --- interfacial adhesion --- phase transformation --- physicomechanical properties --- nanoparticles --- metal matrix nanocomposite (MMNC) --- AlN --- magnesium alloy AM60 --- strengthening mechanisms --- in situ titanium composites --- microstructure analysis --- TiB precipitates --- 7075 Al alloy --- reduced graphene oxide --- strengthening mechanism --- metal matrix nanocomposite --- copper --- graphene --- thermal expansion coefficient --- thermal conductivity --- electrical resistance --- thixoforging --- magnesium-based composite --- fracture --- magnesium-alloy-based composite --- Halpin-Tsai-Kardos model --- deformation behavior --- composite strengthening --- fracture behavior --- magnesium --- high entropy alloy --- composite --- hardness --- compressive properties --- tricalcium phosphate --- compression --- corrosion --- Mg-3Al-0.4Ce alloy --- nano ZnO particles --- uniform distribution --- strength --- titanium matrix composite --- constitutive model --- interfacial debonding --- high temperature --- elastoplastic properties --- nano-sized SiCp --- aluminum matrix composites --- mechanical properties --- microstructures --- Mg-Al-RE alloy --- magnesium alloy --- damping --- Al11La3 phase --- nanosize reinforcement --- spark plasma sintering --- Cu-TiC --- in-situ composites --- mechanical milling --- iron aluminum alloys --- cold/hot PM --- compressibility factor --- wear resistance --- Al-Zn-Cr alloys --- powder metallurgy --- strengthening --- extrusion --- dry sliding wear --- synthesis of core-shell metal nanoparticles --- Cu@Ag composite nanoparticle --- metal mesh --- screen printing --- touch screen panel --- tungsten composites --- tungsten-fibre-net reinforcement --- tensile strength --- metal matrix composites --- nickel --- aluminum --- carbon nanotubes --- ultrasonication --- microstructural characterization --- Magnesium --- Sm2O3 nanoparticles --- compression properties --- microstructure --- ignition --- carbon nanotube --- nanocomposite --- dispersion --- interfacial adhesion --- phase transformation --- physicomechanical properties --- nanoparticles --- metal matrix nanocomposite (MMNC) --- AlN --- magnesium alloy AM60 --- strengthening mechanisms --- in situ titanium composites --- microstructure analysis --- TiB precipitates --- 7075 Al alloy --- reduced graphene oxide --- strengthening mechanism --- metal matrix nanocomposite --- copper --- graphene --- thermal expansion coefficient --- thermal conductivity --- electrical resistance --- thixoforging --- magnesium-based composite --- fracture --- magnesium-alloy-based composite --- Halpin-Tsai-Kardos model --- deformation behavior --- composite strengthening --- fracture behavior --- magnesium --- high entropy alloy --- composite --- hardness --- compressive properties --- tricalcium phosphate --- compression --- corrosion

Listing 1 - 7 of 7
Sort by