Listing 1 - 10 of 13 | << page >> |
Sort by
|
Choose an application
The papers presented in this open access book address diverse challenges in decarbonizing energy systems, ranging from operational to investment planning problems, from market economics to technical and environmental considerations, from distribution grids to transmission grids, and from theoretical considerations to data provision concerns and applied case studies. While most papers have a clear methodological focus, they address policy-relevant questions at the same time. The target audience therefore includes academics and experts in industry as well as policy makers, who are interested in state-of-the-art quantitative modelling of policy relevant problems in energy systems. The 2nd International Symposium on Energy System Optimization (ISESO 2018) was held at the Karlsruhe Institute of Technology (KIT) under the symposium theme “Bridging the Gap Between Mathematical Modelling and Policy Support” on October 10th and 11th 2018. ISESO 2018 was organized by the KIT, the Heidelberg Institute for Theoretical Studies (HITS), the Heidelberg University, the German Aerospace Center and the University of Stuttgart.
Cybernetics & systems theory --- Operational research --- Mathematical modelling --- Operations research. --- Management science. --- System theory. --- Mathematical models. --- Operations Research, Management Science. --- Systems Theory, Control. --- Mathematical Modeling and Industrial Mathematics. --- Models, Mathematical --- Simulation methods --- Systems, Theory of --- Systems science --- Science --- Quantitative business analysis --- Management --- Problem solving --- Operations research --- Statistical decision --- Operational analysis --- Industrial engineering --- Management science --- Research --- System theory --- Philosophy --- Mathematics --- Mathematical models
Choose an application
This volume of the “Encyclopedia of Complexity and Systems Science, Second Edition” (ECSS), introduces the fundamental physical and mathematical concepts underlying the theory of complex physical, chemical, and biological systems. Numerous applications illustrate how these concepts explain observed phenomena in our daily lives, which range from spatio-temporal patterns in fluids from atmospheric turbulence in hurricanes and tornadoes to feedback dynamics of laser intensity to structures in cities and rhythms in the brain. The spontaneous formation of well-organized structures out of microscopic system components and their interactions is one of the most fascinating and challenging phenomena for scientists to understand. Biological systems may also exhibit organized structures emanating from interactions of cells and their networks. For instance, underlying structures in the brain emerge as certain mental states, the ability to coordinate movement, or pathologies such as tremor or epileptic seizures. When we try to explain or understand these extremely complex biological phenomena, it is natural to ask whether analogous processes of self-organization may be found in much simpler systems of the inanimate world. In recent decades, it has become increasingly evident that there exist numerous examples in physical and chemical systems in which well-organized spatio-temporal structures arise out of disordered states. As in living organisms, the functioning of these systems can be maintained only by a flux of energy (and matter) through them. Synergetics combines elements from physics and mathematics to explain how a diversity of systems obey the same basic principles. All chapters in this volume have been thoroughly revised and updated from the first edition of ECSS. The second edition also includes new or expanded coverage of such topics as chaotic dynamics in laser systems and neurons, novel insights into the relation of classical chaos and quantum dynamics, and how noise in the brain tunes observed neural activity and controls animal and human behavior. .
Statistical physics. --- Neural networks (Computer science) . --- Computational complexity. --- Systems biology. --- System theory. --- Applications of Nonlinear Dynamics and Chaos Theory. --- Mathematical Models of Cognitive Processes and Neural Networks. --- Complexity. --- Systems Biology. --- Statistical Physics and Dynamical Systems. --- Complex Systems. --- Systems, Theory of --- Systems science --- Science --- Computational biology --- Bioinformatics --- Biological systems --- Molecular biology --- Complexity, Computational --- Electronic data processing --- Machine theory --- Artificial neural networks --- Nets, Neural (Computer science) --- Networks, Neural (Computer science) --- Neural nets (Computer science) --- Artificial intelligence --- Natural computation --- Soft computing --- Physics --- Mathematical statistics --- Philosophy --- Statistical methods --- Synergetics. --- Applied mathematics. --- Chaotic behavior in systems. --- Mathematical modelling. --- Mathematical physics. --- Maths for engineers. --- Neural networks (Computer science) --- Optical physics. --- Science. --- Research. --- Self-organizing systems.
Choose an application
In recent years, increasing attention has been paid to water quality and environmental aspects related to sediment transport, driven by both ambient forcing and human activities. Estuarine, coastal, and harbor areas often undergo operations to nourish beaches, to maintain navigation channels, and to remove contaminated sediment. Hence, much research is needed related to the sediment processes, transport, and related environmental aspects of marine sediments. The aim of this Special Issue is to exhibit novel research results in this field. Particular attention is paid to water quality and environmental aspects relating to sediment transport driven by anthropogenic activities and natural phenomena: spillover due to tidal processes, metals mobility, coastal modifications driven by extreme events and mean wave climate, sediments re-suspension and dispersion related to marine sediment handling.
Research & information: general --- coastal zone --- storm deformations --- underwater bar --- XBeach --- wave transformation --- cross-shore sediment transport --- equilibrium profile --- dredging and disposal --- environmental effects --- mathematical modeling and monitoring --- sediment dispersion --- sediment handling --- coastal boulder deposit --- hurricane storm surge --- hydrodynamic equations --- Gulf of California (Mexico) --- coastal lagoon --- dissolved and particulate metals --- sediments --- labile forms --- enrichment factor --- early diagenetic process --- groundwater discharges --- Yangtze estuary --- tidal flows --- sediment transport --- sediment spillover --- morphological dynamics --- high-resolution --- numerical model --- marine sediment --- contaminated sediment management --- coastal sediment transport --- harbor siltation --- dredging --- water quality --- coastal engineering --- coastal defence system --- mathematical modelling --- engineering practice --- Kalgoorlie-Boulder (SE WA Goldfields SH51-09)
Choose an application
In recent years, increasing attention has been paid to water quality and environmental aspects related to sediment transport, driven by both ambient forcing and human activities. Estuarine, coastal, and harbor areas often undergo operations to nourish beaches, to maintain navigation channels, and to remove contaminated sediment. Hence, much research is needed related to the sediment processes, transport, and related environmental aspects of marine sediments. The aim of this Special Issue is to exhibit novel research results in this field. Particular attention is paid to water quality and environmental aspects relating to sediment transport driven by anthropogenic activities and natural phenomena: spillover due to tidal processes, metals mobility, coastal modifications driven by extreme events and mean wave climate, sediments re-suspension and dispersion related to marine sediment handling.
coastal zone --- storm deformations --- underwater bar --- XBeach --- wave transformation --- cross-shore sediment transport --- equilibrium profile --- dredging and disposal --- environmental effects --- mathematical modeling and monitoring --- sediment dispersion --- sediment handling --- coastal boulder deposit --- hurricane storm surge --- hydrodynamic equations --- Gulf of California (Mexico) --- coastal lagoon --- dissolved and particulate metals --- sediments --- labile forms --- enrichment factor --- early diagenetic process --- groundwater discharges --- Yangtze estuary --- tidal flows --- sediment transport --- sediment spillover --- morphological dynamics --- high-resolution --- numerical model --- marine sediment --- contaminated sediment management --- coastal sediment transport --- harbor siltation --- dredging --- water quality --- coastal engineering --- coastal defence system --- mathematical modelling --- engineering practice --- Kalgoorlie-Boulder (SE WA Goldfields SH51-09)
Choose an application
In recent years, increasing attention has been paid to water quality and environmental aspects related to sediment transport, driven by both ambient forcing and human activities. Estuarine, coastal, and harbor areas often undergo operations to nourish beaches, to maintain navigation channels, and to remove contaminated sediment. Hence, much research is needed related to the sediment processes, transport, and related environmental aspects of marine sediments. The aim of this Special Issue is to exhibit novel research results in this field. Particular attention is paid to water quality and environmental aspects relating to sediment transport driven by anthropogenic activities and natural phenomena: spillover due to tidal processes, metals mobility, coastal modifications driven by extreme events and mean wave climate, sediments re-suspension and dispersion related to marine sediment handling.
Research & information: general --- coastal zone --- storm deformations --- underwater bar --- XBeach --- wave transformation --- cross-shore sediment transport --- equilibrium profile --- dredging and disposal --- environmental effects --- mathematical modeling and monitoring --- sediment dispersion --- sediment handling --- coastal boulder deposit --- hurricane storm surge --- hydrodynamic equations --- Gulf of California (Mexico) --- coastal lagoon --- dissolved and particulate metals --- sediments --- labile forms --- enrichment factor --- early diagenetic process --- groundwater discharges --- Yangtze estuary --- tidal flows --- sediment transport --- sediment spillover --- morphological dynamics --- high-resolution --- numerical model --- marine sediment --- contaminated sediment management --- coastal sediment transport --- harbor siltation --- dredging --- water quality --- coastal engineering --- coastal defence system --- mathematical modelling --- engineering practice --- Kalgoorlie-Boulder (SE WA Goldfields SH51-09)
Choose an application
This open access book presents a collection of the most up-to-date research results in the field of steel development with a focus on pioneering alloy concepts that result in previously unattainable materials properties. Specifically, it gives a detailed overview of the marriage of high-performance steels of the highest strength and form-ability with damage-tolerant zirconia ceramics by innovative manufacturing technologies, thereby yielding a new class of high-performance composite materials. This book describes how new high-alloy stainless TRIP/TWIP steels (TRIP: TRansformation-Induced Plasticity, TWIP: TWinning-induced Plasticity) are combined with zirconium dioxide ceramics in powder metallurgical routes and via melt infiltration to form novel TRIP-matrix composites. This work also provides a timely perspective on new compact and damage-tolerant composite materials, filigree light-weight structures as well as gradient materials, and a close understanding of the mechanisms of the phase transformations. With a detailed application analysis of state-of-the-art methods in spatial and temporal high-resolution structural analysis, in combination with advanced simulation and modelling, this edited volume is ideal for researchers and engineers working in modern steel development, as well as for graduate students of metallurgy and materials science and engineering.
Structural materials. --- Metals. --- Ceramics. --- Glass. --- Composites (Materials). --- Composite materials. --- Engineering—Materials. --- Mathematical models. --- Structural Materials. --- Metallic Materials. --- Ceramics, Glass, Composites, Natural Materials. --- Materials Engineering. --- Mathematical Modeling and Industrial Mathematics. --- Models, Mathematical --- Simulation methods --- Composites (Materials) --- Multiphase materials --- Reinforced solids --- Solids, Reinforced --- Two phase materials --- Materials --- Amorphous substances --- Ceramics --- Glazing --- Ceramic technology --- Industrial ceramics --- Keramics --- Building materials --- Chemistry, Technical --- Clay --- Metallic elements --- Chemical elements --- Ores --- Metallurgy --- Architectural materials --- Architecture --- Building --- Building supplies --- Buildings --- Construction materials --- Structural materials --- Structural Materials --- Metallic Materials --- Ceramics, Glass, Composites, Natural Materials --- Materials Engineering --- Mathematical Modeling and Industrial Mathematics --- Metals and Alloys --- Steel-Matrix Composite --- Austenitic Stainless Steels --- Powder Metallurgy --- Fracture Toughness --- Mechanical Modeling --- Melt Flow Behavior --- CrMnNi Steels --- Ceramic Casting --- Melt Infiltration --- Open Access --- Materials science --- Structural engineering --- Metals technology / metallurgy --- Industrial chemistry & chemical engineering --- Mathematical modelling --- Maths for engineers
Choose an application
This open access book focuses on robot introspection, which has a direct impact on physical human–robot interaction and long-term autonomy, and which can benefit from autonomous anomaly monitoring and diagnosis, as well as anomaly recovery strategies. In robotics, the ability to reason, solve their own anomalies and proactively enrich owned knowledge is a direct way to improve autonomous behaviors. To this end, the authors start by considering the underlying pattern of multimodal observation during robot manipulation, which can effectively be modeled as a parametric hidden Markov model (HMM). They then adopt a nonparametric Bayesian approach in defining a prior using the hierarchical Dirichlet process (HDP) on the standard HMM parameters, known as the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM). The HDP-HMM can examine an HMM with an unbounded number of possible states and allows flexibility in the complexity of the learned model and the development of reliable and scalable variational inference methods. This book is a valuable reference resource for researchers and designers in the field of robot learning and multimodal perception, as well as for senior undergraduate and graduate university students.
Robotics. --- Automation. --- Statistics . --- Control engineering. --- Mechatronics. --- Machine learning. --- Mathematical models. --- Robotics and Automation. --- Bayesian Inference. --- Control, Robotics, Mechatronics. --- Machine Learning. --- Mathematical Modeling and Industrial Mathematics. --- Models, Mathematical --- Simulation methods --- Learning, Machine --- Artificial intelligence --- Machine theory --- Mechanical engineering --- Microelectronics --- Microelectromechanical systems --- Control engineering --- Control equipment --- Control theory --- Engineering instruments --- Automation --- Programmable controllers --- Statistical analysis --- Statistical data --- Statistical methods --- Statistical science --- Mathematics --- Econometrics --- Automatic factories --- Automatic production --- Computer control --- Engineering cybernetics --- Factories --- Industrial engineering --- Mechanization --- Assembly-line methods --- Automatic control --- Automatic machinery --- CAD/CAM systems --- Robotics --- Robotics and Automation --- Bayesian Inference --- Control, Robotics, Mechatronics --- Machine Learning --- Mathematical Modeling and Industrial Mathematics --- Robotic Engineering --- Control, Robotics, Automation --- Collaborative Robot Introspection --- Nonparametric Bayesian Inference --- Anomaly Monitoring and Diagnosis --- Multimodal Perception --- Anomaly Recovery --- Human-robot Collaboration --- Robot Safety and Protection --- Hidden Markov Model --- Robot Autonomous Manipulation --- open access --- Bayesian inference --- Automatic control engineering --- Electronic devices & materials --- Machine learning --- Mathematical modelling --- Maths for engineers
Choose an application
It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines.
History of engineering & technology --- core saturation --- cross-coupling inductance --- wound synchronous machines (WSM) --- signal injection --- position sensorless --- high-frequency model --- hybrid permanent magnet --- interior permanent magnet (IPM) machine --- magnet-axis-shifted --- reluctance torque --- Sensorless --- induction motors --- H_infinity --- drives --- vector control --- experimental implementation --- direct torque control --- duty cycle control --- harmonic currents --- six-phase induction motor --- torque ripple --- interior permanent magnet synchronous motor (IPMSM) --- sensorless control --- adaptive algorithm --- super-twisting sliding mode observer (STO) --- phase-locked loop (PLL) --- permanent-magnet vernier machine --- in-wheel direct-drive --- outer rotor --- overhang --- soft magnetic composite --- reaction sphere --- spherical motor --- structural design --- torque density optimization --- support vector machines --- finite element method --- induction motor --- smart-sensor --- stray flux --- time-frequency transforms --- wavelet entropy --- harmonic modeling method --- magnetic-geared machine --- hybrid electric vehicle --- magnetic field --- electromagnetic performance --- analytical modeling --- brushless DC motor --- commutation torque ripple --- back electromotive force --- multiphase machines --- fault-tolerance --- dual-channel --- brushless direct current motor with permanent magnet (BLDCM) --- switched reluctance motor (SRM) --- active flux --- stator flux observation --- super-twisting sliding-mode stator flux observer (STSMFO) --- deep-bar effect --- mathematical model --- estimation --- motor drives --- direct torque control (DTC) --- permanent magnet synchronous motor (PMSM) --- maximum torque per ampere (MTPA) operation --- DTC with space-vector modulation (DTC-SVM) --- AFPMSM --- analytical algorithm --- vibration noise --- temperature field analysis --- SynRM --- irreversible demagnetization --- PMa-SynRM --- flux intensifying --- deadbeat current control --- PMSM servo motor drives --- auto tuning --- parameter identification --- periodic controller --- surface permanent magnet synchronous motor --- fault-tolerant system --- multi-channel --- quad-channel operation (QCO) --- triple-channel operation (TCO) --- dual-channel operation (DCO) --- single-channel operation (SCO) --- permanent magnet brushless direct current motor --- BLDCM --- double Fourier analysis --- current spectrum decomposition --- eddy current loss --- permanent magnet machine design --- cogging torque --- permanent magnet machine --- uneven magnets --- IPMSM --- uncertainty and disturbance estimator --- flux-weakening control --- double-cage induction motor --- improvement of motor reliability --- cage winding constructions --- direct start-up --- coupled electromagnetic-thermal model --- outer rotor inductor --- electric vehicle --- high-efficiency --- eco-friendly --- automation --- finite element analysis --- PMSM --- DOE --- optimization --- metamodeling --- adaptive robust control --- energy feedback --- particle swarm optimization --- torque optimal distribution method --- multiphase electric drives --- six-phase machines --- finite control set model predictive control --- predictive current control --- predictive torque control --- high frequency square-wave voltage --- interior permanent-magnet synchronous motor (IPMSM) --- magnetic polarity detection --- rotor position estimation --- characteristics analysis --- fault detection --- stator fault --- rotor fault --- torque estimation --- finite control set mode predictive control --- duty cycle --- maximum torque per ampere --- permanent magnet synchronous motor --- acoustics --- boundary element method --- electric machines --- magneto-mechanics --- modeling --- noise --- vibro-acoustics --- efficiency --- line-start synchronous reluctance motor --- permanent magnet --- power factor --- multiphase --- induction --- motor --- space harmonics --- time harmonics --- injection --- high-speed permanent synchronous motor --- magnetic field characteristic --- iron loss --- stator structure --- online parameters estimation --- permanent magnet synchronous machines --- synchronous reluctance machines --- high frequency signal injection --- CMV --- modulation techniques --- PWM --- railway traction drives --- induction motor drives --- high-speed drives --- overmodulation and six-step operation --- electrical motors --- sot filling factor --- optimization algorithm --- windings --- magnetic wire --- filling factor optimization --- electric drive --- transmission shaft --- electric transmission line --- electrical and mechanical similarities --- kinematic structure --- equivalent circuit --- mathematical modelling --- failure --- detection --- diagnosis --- BLDC --- brushless --- systematic review --- rotor position --- BLDC motor --- sensor misalignment --- sizing methodology --- electrical machines --- thermal model --- electromagnetic model --- switched reluctance motor --- torque sharing functions --- firing angle modulation --- autonomous systems --- brushless synchronous generator --- electric power generation --- high speed generator --- high resistance connection --- fault-detection --- fault-tolerant control --- six-phase permanent magnet synchronous machines --- field-oriented control
Choose an application
It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines.
History of engineering & technology --- core saturation --- cross-coupling inductance --- wound synchronous machines (WSM) --- signal injection --- position sensorless --- high-frequency model --- hybrid permanent magnet --- interior permanent magnet (IPM) machine --- magnet-axis-shifted --- reluctance torque --- Sensorless --- induction motors --- H_infinity --- drives --- vector control --- experimental implementation --- direct torque control --- duty cycle control --- harmonic currents --- six-phase induction motor --- torque ripple --- interior permanent magnet synchronous motor (IPMSM) --- sensorless control --- adaptive algorithm --- super-twisting sliding mode observer (STO) --- phase-locked loop (PLL) --- permanent-magnet vernier machine --- in-wheel direct-drive --- outer rotor --- overhang --- soft magnetic composite --- reaction sphere --- spherical motor --- structural design --- torque density optimization --- support vector machines --- finite element method --- induction motor --- smart-sensor --- stray flux --- time-frequency transforms --- wavelet entropy --- harmonic modeling method --- magnetic-geared machine --- hybrid electric vehicle --- magnetic field --- electromagnetic performance --- analytical modeling --- brushless DC motor --- commutation torque ripple --- back electromotive force --- multiphase machines --- fault-tolerance --- dual-channel --- brushless direct current motor with permanent magnet (BLDCM) --- switched reluctance motor (SRM) --- active flux --- stator flux observation --- super-twisting sliding-mode stator flux observer (STSMFO) --- deep-bar effect --- mathematical model --- estimation --- motor drives --- direct torque control (DTC) --- permanent magnet synchronous motor (PMSM) --- maximum torque per ampere (MTPA) operation --- DTC with space-vector modulation (DTC-SVM) --- AFPMSM --- analytical algorithm --- vibration noise --- temperature field analysis --- SynRM --- irreversible demagnetization --- PMa-SynRM --- flux intensifying --- deadbeat current control --- PMSM servo motor drives --- auto tuning --- parameter identification --- periodic controller --- surface permanent magnet synchronous motor --- fault-tolerant system --- multi-channel --- quad-channel operation (QCO) --- triple-channel operation (TCO) --- dual-channel operation (DCO) --- single-channel operation (SCO) --- permanent magnet brushless direct current motor --- BLDCM --- double Fourier analysis --- current spectrum decomposition --- eddy current loss --- permanent magnet machine design --- cogging torque --- permanent magnet machine --- uneven magnets --- IPMSM --- uncertainty and disturbance estimator --- flux-weakening control --- double-cage induction motor --- improvement of motor reliability --- cage winding constructions --- direct start-up --- coupled electromagnetic-thermal model --- outer rotor inductor --- electric vehicle --- high-efficiency --- eco-friendly --- automation --- finite element analysis --- PMSM --- DOE --- optimization --- metamodeling --- adaptive robust control --- energy feedback --- particle swarm optimization --- torque optimal distribution method --- multiphase electric drives --- six-phase machines --- finite control set model predictive control --- predictive current control --- predictive torque control --- high frequency square-wave voltage --- interior permanent-magnet synchronous motor (IPMSM) --- magnetic polarity detection --- rotor position estimation --- characteristics analysis --- fault detection --- stator fault --- rotor fault --- torque estimation --- finite control set mode predictive control --- duty cycle --- maximum torque per ampere --- permanent magnet synchronous motor --- acoustics --- boundary element method --- electric machines --- magneto-mechanics --- modeling --- noise --- vibro-acoustics --- efficiency --- line-start synchronous reluctance motor --- permanent magnet --- power factor --- multiphase --- induction --- motor --- space harmonics --- time harmonics --- injection --- high-speed permanent synchronous motor --- magnetic field characteristic --- iron loss --- stator structure --- online parameters estimation --- permanent magnet synchronous machines --- synchronous reluctance machines --- high frequency signal injection --- CMV --- modulation techniques --- PWM --- railway traction drives --- induction motor drives --- high-speed drives --- overmodulation and six-step operation --- electrical motors --- sot filling factor --- optimization algorithm --- windings --- magnetic wire --- filling factor optimization --- electric drive --- transmission shaft --- electric transmission line --- electrical and mechanical similarities --- kinematic structure --- equivalent circuit --- mathematical modelling --- failure --- detection --- diagnosis --- BLDC --- brushless --- systematic review --- rotor position --- BLDC motor --- sensor misalignment --- sizing methodology --- electrical machines --- thermal model --- electromagnetic model --- switched reluctance motor --- torque sharing functions --- firing angle modulation --- autonomous systems --- brushless synchronous generator --- electric power generation --- high speed generator --- high resistance connection --- fault-detection --- fault-tolerant control --- six-phase permanent magnet synchronous machines --- field-oriented control
Choose an application
It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines.
core saturation --- cross-coupling inductance --- wound synchronous machines (WSM) --- signal injection --- position sensorless --- high-frequency model --- hybrid permanent magnet --- interior permanent magnet (IPM) machine --- magnet-axis-shifted --- reluctance torque --- Sensorless --- induction motors --- H_infinity --- drives --- vector control --- experimental implementation --- direct torque control --- duty cycle control --- harmonic currents --- six-phase induction motor --- torque ripple --- interior permanent magnet synchronous motor (IPMSM) --- sensorless control --- adaptive algorithm --- super-twisting sliding mode observer (STO) --- phase-locked loop (PLL) --- permanent-magnet vernier machine --- in-wheel direct-drive --- outer rotor --- overhang --- soft magnetic composite --- reaction sphere --- spherical motor --- structural design --- torque density optimization --- support vector machines --- finite element method --- induction motor --- smart-sensor --- stray flux --- time-frequency transforms --- wavelet entropy --- harmonic modeling method --- magnetic-geared machine --- hybrid electric vehicle --- magnetic field --- electromagnetic performance --- analytical modeling --- brushless DC motor --- commutation torque ripple --- back electromotive force --- multiphase machines --- fault-tolerance --- dual-channel --- brushless direct current motor with permanent magnet (BLDCM) --- switched reluctance motor (SRM) --- active flux --- stator flux observation --- super-twisting sliding-mode stator flux observer (STSMFO) --- deep-bar effect --- mathematical model --- estimation --- motor drives --- direct torque control (DTC) --- permanent magnet synchronous motor (PMSM) --- maximum torque per ampere (MTPA) operation --- DTC with space-vector modulation (DTC-SVM) --- AFPMSM --- analytical algorithm --- vibration noise --- temperature field analysis --- SynRM --- irreversible demagnetization --- PMa-SynRM --- flux intensifying --- deadbeat current control --- PMSM servo motor drives --- auto tuning --- parameter identification --- periodic controller --- surface permanent magnet synchronous motor --- fault-tolerant system --- multi-channel --- quad-channel operation (QCO) --- triple-channel operation (TCO) --- dual-channel operation (DCO) --- single-channel operation (SCO) --- permanent magnet brushless direct current motor --- BLDCM --- double Fourier analysis --- current spectrum decomposition --- eddy current loss --- permanent magnet machine design --- cogging torque --- permanent magnet machine --- uneven magnets --- IPMSM --- uncertainty and disturbance estimator --- flux-weakening control --- double-cage induction motor --- improvement of motor reliability --- cage winding constructions --- direct start-up --- coupled electromagnetic-thermal model --- outer rotor inductor --- electric vehicle --- high-efficiency --- eco-friendly --- automation --- finite element analysis --- PMSM --- DOE --- optimization --- metamodeling --- adaptive robust control --- energy feedback --- particle swarm optimization --- torque optimal distribution method --- multiphase electric drives --- six-phase machines --- finite control set model predictive control --- predictive current control --- predictive torque control --- high frequency square-wave voltage --- interior permanent-magnet synchronous motor (IPMSM) --- magnetic polarity detection --- rotor position estimation --- characteristics analysis --- fault detection --- stator fault --- rotor fault --- torque estimation --- finite control set mode predictive control --- duty cycle --- maximum torque per ampere --- permanent magnet synchronous motor --- acoustics --- boundary element method --- electric machines --- magneto-mechanics --- modeling --- noise --- vibro-acoustics --- efficiency --- line-start synchronous reluctance motor --- permanent magnet --- power factor --- multiphase --- induction --- motor --- space harmonics --- time harmonics --- injection --- high-speed permanent synchronous motor --- magnetic field characteristic --- iron loss --- stator structure --- online parameters estimation --- permanent magnet synchronous machines --- synchronous reluctance machines --- high frequency signal injection --- CMV --- modulation techniques --- PWM --- railway traction drives --- induction motor drives --- high-speed drives --- overmodulation and six-step operation --- electrical motors --- sot filling factor --- optimization algorithm --- windings --- magnetic wire --- filling factor optimization --- electric drive --- transmission shaft --- electric transmission line --- electrical and mechanical similarities --- kinematic structure --- equivalent circuit --- mathematical modelling --- failure --- detection --- diagnosis --- BLDC --- brushless --- systematic review --- rotor position --- BLDC motor --- sensor misalignment --- sizing methodology --- electrical machines --- thermal model --- electromagnetic model --- switched reluctance motor --- torque sharing functions --- firing angle modulation --- autonomous systems --- brushless synchronous generator --- electric power generation --- high speed generator --- high resistance connection --- fault-detection --- fault-tolerant control --- six-phase permanent magnet synchronous machines --- field-oriented control
Listing 1 - 10 of 13 | << page >> |
Sort by
|