Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2020 (4)

Listing 1 - 4 of 4
Sort by

Book
Indoor Air Quality
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The monitoring of indoor air pollutants in a spatio-temporal basis is challenging. A key element is the access to local (i.e., indoor residential, workplace, or public building) exposure measurements. Unfortunately, the high cost and complexity of most current air pollutant monitors result in a lack of detailed spatial and temporal resolution. As a result, individuals in vulnerable groups (children, pregnant, elderly, and sick people) have little insight into their personal exposure levels. This becomes significant in cases of hyper-local variations and short-term pollution events such as instant indoor activity (e.g., cooking, smoking, and dust resuspension). Advances in sensor miniaturization have encouraged the development of small, inexpensive devices capable of estimating pollutant concentrations. This new class of sensors presents new possibilities for indoor exposure monitoring. This Special Issue invites research in the areas of the triptych: indoor air pollution monitoring, indoor air modeling, and exposure to indoor air pollution. Topics of interest for the Special Issue include, but are not limited to, the following: low-cost sensors for indoor air monitoring; indoor particulate matter and volatile organic compounds; ozone-terpene chemistry; biological agents indoors; source apportionment; exposure assessment; health effects of indoor air pollutants; occupant perception; climate change impacts on indoor air quality.

Keywords

perceived indoor air quality --- building research --- indoor air questionnaires --- psychosocial work environment --- categorisation --- ventilation --- mould --- moisture --- man-made mineral fibres --- IAQ --- enhanced living environments --- IEQ --- IoT --- smart cities --- LEC --- passive space design --- tubular space --- physical building environment --- fieldwork test --- subway station building complex --- thermal comfort --- arousal level --- physiological indices --- electroencephalography --- electrocardiography --- airborne microorganisms --- bacteria --- fungi --- gyms --- indoor air quality --- libraries --- offices --- contactless measurements --- skin sensitivity index --- subtleness magnification --- deep learning --- piecewise stationary time series --- PM2.5 --- sensor --- correction --- pan frying --- secondhand smoke --- urban traffic --- allergens --- endotoxin --- biological agents --- laboratory animal allergy --- environmental monitoring --- occupational exposure --- perceived comfort --- sick building syndrome --- health effects --- internet of things --- e-nose --- smart home --- ESP32 --- teenagers --- children --- bedroom --- CO2 --- particulate matter --- perception --- response behavior --- psychological attribute --- indoor environment quality --- PPD --- TVOC --- BREEAM assessment --- occupant satisfaction --- children’s house --- industrial city --- window opening --- cooking --- STAMP --- STPA --- physical process --- indoor environment safety --- smart home systems --- IAQ improvement --- photo-paint --- NO --- Toluene degradation  --- n/a --- children's house


Book
Indoor Air Quality
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The monitoring of indoor air pollutants in a spatio-temporal basis is challenging. A key element is the access to local (i.e., indoor residential, workplace, or public building) exposure measurements. Unfortunately, the high cost and complexity of most current air pollutant monitors result in a lack of detailed spatial and temporal resolution. As a result, individuals in vulnerable groups (children, pregnant, elderly, and sick people) have little insight into their personal exposure levels. This becomes significant in cases of hyper-local variations and short-term pollution events such as instant indoor activity (e.g., cooking, smoking, and dust resuspension). Advances in sensor miniaturization have encouraged the development of small, inexpensive devices capable of estimating pollutant concentrations. This new class of sensors presents new possibilities for indoor exposure monitoring. This Special Issue invites research in the areas of the triptych: indoor air pollution monitoring, indoor air modeling, and exposure to indoor air pollution. Topics of interest for the Special Issue include, but are not limited to, the following: low-cost sensors for indoor air monitoring; indoor particulate matter and volatile organic compounds; ozone-terpene chemistry; biological agents indoors; source apportionment; exposure assessment; health effects of indoor air pollutants; occupant perception; climate change impacts on indoor air quality.

Keywords

Research & information: general --- Environmental economics --- perceived indoor air quality --- building research --- indoor air questionnaires --- psychosocial work environment --- categorisation --- ventilation --- mould --- moisture --- man-made mineral fibres --- IAQ --- enhanced living environments --- IEQ --- IoT --- smart cities --- LEC --- passive space design --- tubular space --- physical building environment --- fieldwork test --- subway station building complex --- thermal comfort --- arousal level --- physiological indices --- electroencephalography --- electrocardiography --- airborne microorganisms --- bacteria --- fungi --- gyms --- indoor air quality --- libraries --- offices --- contactless measurements --- skin sensitivity index --- subtleness magnification --- deep learning --- piecewise stationary time series --- PM2.5 --- sensor --- correction --- pan frying --- secondhand smoke --- urban traffic --- allergens --- endotoxin --- biological agents --- laboratory animal allergy --- environmental monitoring --- occupational exposure --- perceived comfort --- sick building syndrome --- health effects --- internet of things --- e-nose --- smart home --- ESP32 --- teenagers --- children --- bedroom --- CO2 --- particulate matter --- perception --- response behavior --- psychological attribute --- indoor environment quality --- PPD --- TVOC --- BREEAM assessment --- occupant satisfaction --- children's house --- industrial city --- window opening --- cooking --- STAMP --- STPA --- physical process --- indoor environment safety --- smart home systems --- IAQ improvement --- photo-paint --- NO --- Toluene degradation  --- perceived indoor air quality --- building research --- indoor air questionnaires --- psychosocial work environment --- categorisation --- ventilation --- mould --- moisture --- man-made mineral fibres --- IAQ --- enhanced living environments --- IEQ --- IoT --- smart cities --- LEC --- passive space design --- tubular space --- physical building environment --- fieldwork test --- subway station building complex --- thermal comfort --- arousal level --- physiological indices --- electroencephalography --- electrocardiography --- airborne microorganisms --- bacteria --- fungi --- gyms --- indoor air quality --- libraries --- offices --- contactless measurements --- skin sensitivity index --- subtleness magnification --- deep learning --- piecewise stationary time series --- PM2.5 --- sensor --- correction --- pan frying --- secondhand smoke --- urban traffic --- allergens --- endotoxin --- biological agents --- laboratory animal allergy --- environmental monitoring --- occupational exposure --- perceived comfort --- sick building syndrome --- health effects --- internet of things --- e-nose --- smart home --- ESP32 --- teenagers --- children --- bedroom --- CO2 --- particulate matter --- perception --- response behavior --- psychological attribute --- indoor environment quality --- PPD --- TVOC --- BREEAM assessment --- occupant satisfaction --- children's house --- industrial city --- window opening --- cooking --- STAMP --- STPA --- physical process --- indoor environment safety --- smart home systems --- IAQ improvement --- photo-paint --- NO --- Toluene degradation 


Book
Indoor Air Quality
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The monitoring of indoor air pollutants in a spatio-temporal basis is challenging. A key element is the access to local (i.e., indoor residential, workplace, or public building) exposure measurements. Unfortunately, the high cost and complexity of most current air pollutant monitors result in a lack of detailed spatial and temporal resolution. As a result, individuals in vulnerable groups (children, pregnant, elderly, and sick people) have little insight into their personal exposure levels. This becomes significant in cases of hyper-local variations and short-term pollution events such as instant indoor activity (e.g., cooking, smoking, and dust resuspension). Advances in sensor miniaturization have encouraged the development of small, inexpensive devices capable of estimating pollutant concentrations. This new class of sensors presents new possibilities for indoor exposure monitoring. This Special Issue invites research in the areas of the triptych: indoor air pollution monitoring, indoor air modeling, and exposure to indoor air pollution. Topics of interest for the Special Issue include, but are not limited to, the following: low-cost sensors for indoor air monitoring; indoor particulate matter and volatile organic compounds; ozone-terpene chemistry; biological agents indoors; source apportionment; exposure assessment; health effects of indoor air pollutants; occupant perception; climate change impacts on indoor air quality.

Keywords

Research & information: general --- Environmental economics --- perceived indoor air quality --- building research --- indoor air questionnaires --- psychosocial work environment --- categorisation --- ventilation --- mould --- moisture --- man-made mineral fibres --- IAQ --- enhanced living environments --- IEQ --- IoT --- smart cities --- LEC --- passive space design --- tubular space --- physical building environment --- fieldwork test --- subway station building complex --- thermal comfort --- arousal level --- physiological indices --- electroencephalography --- electrocardiography --- airborne microorganisms --- bacteria --- fungi --- gyms --- indoor air quality --- libraries --- offices --- contactless measurements --- skin sensitivity index --- subtleness magnification --- deep learning --- piecewise stationary time series --- PM2.5 --- sensor --- correction --- pan frying --- secondhand smoke --- urban traffic --- allergens --- endotoxin --- biological agents --- laboratory animal allergy --- environmental monitoring --- occupational exposure --- perceived comfort --- sick building syndrome --- health effects --- internet of things --- e-nose --- smart home --- ESP32 --- teenagers --- children --- bedroom --- CO2 --- particulate matter --- perception --- response behavior --- psychological attribute --- indoor environment quality --- PPD --- TVOC --- BREEAM assessment --- occupant satisfaction --- children’s house --- industrial city --- window opening --- cooking --- STAMP --- STPA --- physical process --- indoor environment safety --- smart home systems --- IAQ improvement --- photo-paint --- NO --- Toluene degradation  --- n/a --- children's house


Book
Distributed Energy Resources Management 2018
Authors: ---
ISBN: 3039281712 3039281704 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue Distributed Energy Resources Management 2018 includes 13 papers, and is a continuation of the Special Issue Distributed Energy Resources Management. The success of the previous edition shows the unquestionable relevance of distributed energy resources in the operation of power and energy systems at both the distribution level and at the wider power system level. Improving the management of distributed energy resources makes it possible to accommodate the higher penetration of intermittent distributed generation and electric vehicle charging. Demand response programs, namely the ones with a distributed nature, allow the consumers to contribute to the increased system efficiency while receiving benefits. This book addresses the management of distributed energy resources, with a focus on methods and techniques to achieve an optimized operation, in order to aggregate the resources namely in the scope of virtual power players and other types of aggregators, and to remunerate them. The integration of distributed resources in electricity markets is also addressed as an enabler for their increased and efficient use.

Keywords

n/a --- virtual power plant --- bidding strategy --- local flexibility market --- multi-period optimal power flow --- flexibility service --- occupant comfort --- unbalanced networks --- decentralized energy management system --- autonomous control --- optimization --- energy storage --- microgrids --- energy efficiency --- distributed energy --- control system --- DSM --- optimal scheduling --- adaptability --- synergistic optimization strategy --- teaching-learning --- distributed generation --- energy storage system --- stackelberg dynamic game --- IoT (Internet of Things) --- supply and demand --- comprehensive benefits --- distributed generator --- frequency bus-signaling --- active distribution networks --- swarm intelligence --- wind --- multi-agent technology --- solar --- power system management --- fault-tolerant control --- indoor environment quality --- multi-temporal optimal power flow --- multi-agent synergetic estimation --- smart grids --- local energy trading --- active power control --- prosumer --- microgrid --- trade agreements --- healthy building --- smart grid --- nonlinear control --- algorithm design and analysis --- batteries --- droop control --- distributed energy resources --- aggregator --- multi-agent system --- frequency control --- particle swarm optimization --- distribution system operator --- building climate control --- low voltage networks --- demand Response --- clustering --- distributed coordination --- demand-side management --- demand response

Listing 1 - 4 of 4
Sort by