Listing 1 - 10 of 12 | << page >> |
Sort by
|
Choose an application
In an effort to contribute to global efforts by addressing the marine pollution from various emission types, this Special Issue of Ship Lifecyle for Journal of Marine Science and Engineering was inspired to provide a comprehensive insight for naval architects, marine engineers, designers, shipyards, and ship-owners who strive to find optimal ways to survive in competitive markets by improving cycle time and the capacity to reduce design, production, and operation costs while pursuing zero emission. In this context, this Special Issue is devoted to providing insights into the latest research and technical developments on ship systems and operation with a life cycle point of view. The goal of this Special Issue is to bring together researchers from the whole marine and maritime community into a common forum to share cutting-edge research on cleaner shipping. It is strongly believed that such a joint effort will contribute to enhancing the sustainability of the marine and maritime activities. This Special Issue features six novel publications dedicated to this endeavor. First of all, as a proactive response to transitioning to cleaner marine fuel sources, numerous aspects of the excellence of fuel-cell based hybrid ships were demonstrated through four publications. In addition, two publications demonstrated the effectiveness of life cycle assessment (LCA) applicable to marine vessels.
History of engineering & technology --- electric propulsion system --- DFE rectifier --- AFE rectifier --- phase angle detector --- hybrid power source --- fuel cell --- molten carbonate fuel cell (MCFC) --- carbon dioxide --- Molten carbonate fuel cell (MCFC) --- Hybrid test bed --- Operation profile --- Power quality --- life cycle --- maintenance costs --- propulsion system maintenance --- research vessel --- LNG-fueled ship --- IMO GHG --- LNG --- MGO --- LCA --- marine fuel --- hybrid power system --- failure mode and effects analysis --- risk priority number --- ship safety --- Kendall’s coefficient --- life cycle assessment (LCA), maritime environment --- sustainable production and shipping --- CO2 emissions --- NOx emissions --- SOx emissions
Choose an application
In an effort to contribute to global efforts by addressing the marine pollution from various emission types, this Special Issue of Ship Lifecyle for Journal of Marine Science and Engineering was inspired to provide a comprehensive insight for naval architects, marine engineers, designers, shipyards, and ship-owners who strive to find optimal ways to survive in competitive markets by improving cycle time and the capacity to reduce design, production, and operation costs while pursuing zero emission. In this context, this Special Issue is devoted to providing insights into the latest research and technical developments on ship systems and operation with a life cycle point of view. The goal of this Special Issue is to bring together researchers from the whole marine and maritime community into a common forum to share cutting-edge research on cleaner shipping. It is strongly believed that such a joint effort will contribute to enhancing the sustainability of the marine and maritime activities. This Special Issue features six novel publications dedicated to this endeavor. First of all, as a proactive response to transitioning to cleaner marine fuel sources, numerous aspects of the excellence of fuel-cell based hybrid ships were demonstrated through four publications. In addition, two publications demonstrated the effectiveness of life cycle assessment (LCA) applicable to marine vessels.
electric propulsion system --- DFE rectifier --- AFE rectifier --- phase angle detector --- hybrid power source --- fuel cell --- molten carbonate fuel cell (MCFC) --- carbon dioxide --- Molten carbonate fuel cell (MCFC) --- Hybrid test bed --- Operation profile --- Power quality --- life cycle --- maintenance costs --- propulsion system maintenance --- research vessel --- LNG-fueled ship --- IMO GHG --- LNG --- MGO --- LCA --- marine fuel --- hybrid power system --- failure mode and effects analysis --- risk priority number --- ship safety --- Kendall’s coefficient --- life cycle assessment (LCA), maritime environment --- sustainable production and shipping --- CO2 emissions --- NOx emissions --- SOx emissions
Choose an application
In an effort to contribute to global efforts by addressing the marine pollution from various emission types, this Special Issue of Ship Lifecyle for Journal of Marine Science and Engineering was inspired to provide a comprehensive insight for naval architects, marine engineers, designers, shipyards, and ship-owners who strive to find optimal ways to survive in competitive markets by improving cycle time and the capacity to reduce design, production, and operation costs while pursuing zero emission. In this context, this Special Issue is devoted to providing insights into the latest research and technical developments on ship systems and operation with a life cycle point of view. The goal of this Special Issue is to bring together researchers from the whole marine and maritime community into a common forum to share cutting-edge research on cleaner shipping. It is strongly believed that such a joint effort will contribute to enhancing the sustainability of the marine and maritime activities. This Special Issue features six novel publications dedicated to this endeavor. First of all, as a proactive response to transitioning to cleaner marine fuel sources, numerous aspects of the excellence of fuel-cell based hybrid ships were demonstrated through four publications. In addition, two publications demonstrated the effectiveness of life cycle assessment (LCA) applicable to marine vessels.
History of engineering & technology --- electric propulsion system --- DFE rectifier --- AFE rectifier --- phase angle detector --- hybrid power source --- fuel cell --- molten carbonate fuel cell (MCFC) --- carbon dioxide --- Molten carbonate fuel cell (MCFC) --- Hybrid test bed --- Operation profile --- Power quality --- life cycle --- maintenance costs --- propulsion system maintenance --- research vessel --- LNG-fueled ship --- IMO GHG --- LNG --- MGO --- LCA --- marine fuel --- hybrid power system --- failure mode and effects analysis --- risk priority number --- ship safety --- Kendall’s coefficient --- life cycle assessment (LCA), maritime environment --- sustainable production and shipping --- CO2 emissions --- NOx emissions --- SOx emissions --- electric propulsion system --- DFE rectifier --- AFE rectifier --- phase angle detector --- hybrid power source --- fuel cell --- molten carbonate fuel cell (MCFC) --- carbon dioxide --- Molten carbonate fuel cell (MCFC) --- Hybrid test bed --- Operation profile --- Power quality --- life cycle --- maintenance costs --- propulsion system maintenance --- research vessel --- LNG-fueled ship --- IMO GHG --- LNG --- MGO --- LCA --- marine fuel --- hybrid power system --- failure mode and effects analysis --- risk priority number --- ship safety --- Kendall’s coefficient --- life cycle assessment (LCA), maritime environment --- sustainable production and shipping --- CO2 emissions --- NOx emissions --- SOx emissions
Choose an application
In recent years, power electronics have been intensely contributing to the development and evolution of new structures for the processing of energy. They can be used in a wide range of applications ranging from power systems and electrical machines to electric vehicles and robot arm drives. In conjunction with the evolution of microprocessors and advanced control theories, power electronics are playing an increasingly essential role in our society. Thus, in order to cope with the obstacles lying ahead, this book presents a collection of original studies and modeling methods which were developed and published in the field of electrical energy conditioning and control by using circuits and electronic devices, with an emphasis on power applications and industrial control. Researchers have contributed 19 selected and peer-reviewed papers covering a wide range of topics by addressing a wide variety of themes, such as motor drives, AC–DC and DC–DC converters, multilevel converters, varistors, and electromagnetic compatibility, among others. The overall result is a book that represents a cohesive collection of inter-/multidisciplinary works regarding the industrial applications of power electronics.
History of engineering & technology --- Energy industries & utilities --- failure mode --- impulse current --- microstructure --- multiple lightning --- ZnO varistors --- multilevel matrix converter --- rotating voltage space vector --- common move voltage --- space vector pulse width modulation --- venturini control method --- electric vehicle --- electromagnetic compatibility --- electromagnetic topology --- radiated emission --- nonlinear effects --- three-level neutral-point clamped inverter --- induction motor --- speed observation --- compensation --- impedance-source inverter --- shoot-through --- dc-dc converter --- dc-ac converter --- DC-DC power converter --- Takagi–Sugeno fuzzy system --- hierarchical binary tree --- circuit breaker --- fault current limiter --- current source circuit --- voltage clamping --- constant current control --- frequency domain electromagnetic --- weighted factor --- model predictive flux control --- interior permanent magnet synchronous --- discrete space vector modulation --- microgrid protection --- power quality --- fault current --- H bridge --- look-up table --- interpolation error --- PMSM drive --- circulating current control --- modular multilevel converter (MMC) --- static synchronous compensator (STATCOM) --- asymmetric --- capacitors --- multilevel inverter --- power electronics --- self-charging --- virtual DC links --- full-bridge converter --- phase shift modulation --- supercapacitors --- isolated DC-DC bidirectional converter --- electrostatic discharge (ESD) --- elliptical-cylinder type --- human-body model (HBM) --- n-channel lateral-diffused MOSFET (nLDMOS) --- super-junction (SJ) --- ultra high-voltage (UHV) --- aging characteristics --- energy absorption --- boost inverter --- single source --- low components --- PMBLDC motor --- fuzzy-logic controller design --- common mode inverters --- photovoltaic --- leakage current elimination --- pulse width modulation --- power converters --- electrical machines --- power grid stability analysis --- inverters --- power supplies --- multilevel converters --- motor drives --- power semiconductor devices --- Tara / Neutral Junction (Central NT SF53-06)
Choose an application
In recent years, power electronics have been intensely contributing to the development and evolution of new structures for the processing of energy. They can be used in a wide range of applications ranging from power systems and electrical machines to electric vehicles and robot arm drives. In conjunction with the evolution of microprocessors and advanced control theories, power electronics are playing an increasingly essential role in our society. Thus, in order to cope with the obstacles lying ahead, this book presents a collection of original studies and modeling methods which were developed and published in the field of electrical energy conditioning and control by using circuits and electronic devices, with an emphasis on power applications and industrial control. Researchers have contributed 19 selected and peer-reviewed papers covering a wide range of topics by addressing a wide variety of themes, such as motor drives, AC–DC and DC–DC converters, multilevel converters, varistors, and electromagnetic compatibility, among others. The overall result is a book that represents a cohesive collection of inter-/multidisciplinary works regarding the industrial applications of power electronics.
failure mode --- impulse current --- microstructure --- multiple lightning --- ZnO varistors --- multilevel matrix converter --- rotating voltage space vector --- common move voltage --- space vector pulse width modulation --- venturini control method --- electric vehicle --- electromagnetic compatibility --- electromagnetic topology --- radiated emission --- nonlinear effects --- three-level neutral-point clamped inverter --- induction motor --- speed observation --- compensation --- impedance-source inverter --- shoot-through --- dc-dc converter --- dc-ac converter --- DC-DC power converter --- Takagi–Sugeno fuzzy system --- hierarchical binary tree --- circuit breaker --- fault current limiter --- current source circuit --- voltage clamping --- constant current control --- frequency domain electromagnetic --- weighted factor --- model predictive flux control --- interior permanent magnet synchronous --- discrete space vector modulation --- microgrid protection --- power quality --- fault current --- H bridge --- look-up table --- interpolation error --- PMSM drive --- circulating current control --- modular multilevel converter (MMC) --- static synchronous compensator (STATCOM) --- asymmetric --- capacitors --- multilevel inverter --- power electronics --- self-charging --- virtual DC links --- full-bridge converter --- phase shift modulation --- supercapacitors --- isolated DC-DC bidirectional converter --- electrostatic discharge (ESD) --- elliptical-cylinder type --- human-body model (HBM) --- n-channel lateral-diffused MOSFET (nLDMOS) --- super-junction (SJ) --- ultra high-voltage (UHV) --- aging characteristics --- energy absorption --- boost inverter --- single source --- low components --- PMBLDC motor --- fuzzy-logic controller design --- common mode inverters --- photovoltaic --- leakage current elimination --- pulse width modulation --- power converters --- electrical machines --- power grid stability analysis --- inverters --- power supplies --- multilevel converters --- motor drives --- power semiconductor devices --- Tara / Neutral Junction (Central NT SF53-06)
Choose an application
In recent years, power electronics have been intensely contributing to the development and evolution of new structures for the processing of energy. They can be used in a wide range of applications ranging from power systems and electrical machines to electric vehicles and robot arm drives. In conjunction with the evolution of microprocessors and advanced control theories, power electronics are playing an increasingly essential role in our society. Thus, in order to cope with the obstacles lying ahead, this book presents a collection of original studies and modeling methods which were developed and published in the field of electrical energy conditioning and control by using circuits and electronic devices, with an emphasis on power applications and industrial control. Researchers have contributed 19 selected and peer-reviewed papers covering a wide range of topics by addressing a wide variety of themes, such as motor drives, AC–DC and DC–DC converters, multilevel converters, varistors, and electromagnetic compatibility, among others. The overall result is a book that represents a cohesive collection of inter-/multidisciplinary works regarding the industrial applications of power electronics.
History of engineering & technology --- Energy industries & utilities --- failure mode --- impulse current --- microstructure --- multiple lightning --- ZnO varistors --- multilevel matrix converter --- rotating voltage space vector --- common move voltage --- space vector pulse width modulation --- venturini control method --- electric vehicle --- electromagnetic compatibility --- electromagnetic topology --- radiated emission --- nonlinear effects --- three-level neutral-point clamped inverter --- induction motor --- speed observation --- compensation --- impedance-source inverter --- shoot-through --- dc-dc converter --- dc-ac converter --- DC-DC power converter --- Takagi–Sugeno fuzzy system --- hierarchical binary tree --- circuit breaker --- fault current limiter --- current source circuit --- voltage clamping --- constant current control --- frequency domain electromagnetic --- weighted factor --- model predictive flux control --- interior permanent magnet synchronous --- discrete space vector modulation --- microgrid protection --- power quality --- fault current --- H bridge --- look-up table --- interpolation error --- PMSM drive --- circulating current control --- modular multilevel converter (MMC) --- static synchronous compensator (STATCOM) --- asymmetric --- capacitors --- multilevel inverter --- power electronics --- self-charging --- virtual DC links --- full-bridge converter --- phase shift modulation --- supercapacitors --- isolated DC-DC bidirectional converter --- electrostatic discharge (ESD) --- elliptical-cylinder type --- human-body model (HBM) --- n-channel lateral-diffused MOSFET (nLDMOS) --- super-junction (SJ) --- ultra high-voltage (UHV) --- aging characteristics --- energy absorption --- boost inverter --- single source --- low components --- PMBLDC motor --- fuzzy-logic controller design --- common mode inverters --- photovoltaic --- leakage current elimination --- pulse width modulation --- power converters --- electrical machines --- power grid stability analysis --- inverters --- power supplies --- multilevel converters --- motor drives --- power semiconductor devices --- Tara / Neutral Junction (Central NT SF53-06)
Choose an application
This book derives from the Special Issue of the Manufacturing Engineering Society (MES) that was launched as a Special Issue of the journal Materials. The 48 contributions, published in this book, explore the evolution of traditional manufacturing models toward the new requirements of the Manufacturing Industry 4.0 and present cutting-edge advances in the field of Manufacturing Engineering focusing on additive manufacturing and 3D printing, advances and innovations in manufacturing processes, sustainable and green manufacturing, manufacturing systems (machines, equipment and tooling), metrology and quality in manufacturing, Industry 4.0, product lifecycle management (PLM) technologies, and production planning and risks.
History of engineering & technology --- ultrasonic metal welding --- finite element analysis --- temperature distribution --- strength of the joint in tension --- heat flux --- friction --- plastic deformation --- thermocouple --- WEDM --- deep learning --- deep neural networks --- Industry 4.0 --- crash boxes --- joining by forming --- resistance spot-welding --- crashworthiness --- UNS A92024 --- WC–Co --- wear mechanism --- tribology --- adhesion --- laser --- additive manufacturing --- laser beam machining --- laser polishing --- waviness --- roughness --- Inconel 718 --- Ti6Al4V alloy --- chip geometry --- dry machining --- parametric models --- turning --- UNS A92024-T3 --- corrosion --- surface integrity --- Ra --- residual stress --- functional performance --- ultimate tensile strength --- wear --- drilling --- machining --- dry drilling --- stack --- FML --- CFRP --- UNS A97075 --- stepped shaft --- cross wedge rolling --- plastic flow kinetic theories --- variable cone angle billets --- near-net forming --- gear manufacturing --- roughness model --- multitasking machines/multiprocess machines --- NEXAFS --- soft X-rays SXR --- SXR absorption spectroscopy --- respiratory movement --- lung tumor --- radiotherapy --- arduino --- cancer treatment --- linear accelerator --- ultrasonic molding --- microchannel --- thin-wall plate --- replicability --- polystyrene --- medical devices --- FDM --- PLA --- material color --- pigmentation --- extrusion temperature --- humidity --- micro-manufacturing --- manufacturing systems --- production planning --- polylactide (PLA) --- acrylonitrile butadiene styrene (ABS) --- tensile behaviour --- layer height --- infill density --- layer orientation --- cybernetics --- system dynamics --- production management --- maintenance management --- Viable System Model --- automotive industry --- hybrid components stack --- titanium --- magnesium --- repair and maintenance operations --- roughness average (Ra) --- ANOVA --- in-process measurement --- geometric accuracy --- grinding process --- tapered roller bearings --- single --- point --- incremental --- forming --- thermoplastics --- biocompatible --- temperature --- process --- parameters --- 3D printing --- correlation coefficients --- fused deposition modeling --- non-parametric tests --- surface roughness --- LMD --- laser metal deposition --- shielding gas --- argon --- helium --- melt pool temperature --- synthetic polymer --- bioprinting --- multi-material microextrusion --- bioink --- Selective Laser Melting --- thermo fluidic --- phase change --- consolidation --- Arbitrary Lagrangean–Eulerian Method --- metallic powder --- basalt fiber reinforced plastic (BFRP) --- delamination --- edge trimming --- tool wear --- scaffold --- PCL --- RepRap --- fused filament fabrication --- three-dimensional --- cell culture --- design --- topological optimization --- cost --- stock --- spare parts --- free-form filament fabrication (FFF) --- robot-assisted polishing --- force signal --- end point detection --- WAAM --- GMAW --- cold metal transfer --- hardness --- mechanical properties --- thermal input --- microstructure --- Synchrotron X-rays --- lithography --- curved substrate --- microstructures --- computed tomography --- surface extraction --- Canny algorithm --- Deriche algorithm --- carbon fiber reinforced polymer --- hole quality characteristics --- geometrical parameters --- roughness parameters --- taper --- heat affected zone --- product lifecycle management (PLM) --- manufacturing problem solving (MPS) --- fault diagnosis --- smart factory --- process failure mode and effect analysis (PFMEA) --- case-based reasoning (CBR) --- hole making --- surface texture --- contact measurement --- optical measurement --- delphi prospection --- education --- employment --- feature-based modeling --- inspection planning --- dimensional and geometrical specification --- process specification --- collaborative and integrated product-process development --- modeling --- laser processing --- simulation --- pyrometer --- aluminum --- brain --- rapid prototyping --- atlas --- rat --- magnetic resonance imaging --- educative model --- scaffolds --- porosity --- pore size --- multiobjective optimization --- priority dispatching rules --- simulation optimization --- job shop scheduling --- flexible manufacturing systems --- service-oriented manufacturing systems --- maintenance --- aircrat engine repair and overhaul (MRO) --- incremental forming --- FEM --- force prediction --- numerical model --- semi-analytical model --- specific energy --- welding distortion --- LSND (low stress no distortion) --- htTTT --- model validation --- Compression-After-Impact testing --- Compression-After-Impact strength --- carbon fiber reinforced plastics --- flat specimen --- AA7075 --- risk assessment --- dangerous substance --- Directive 89/391/EEC --- Directive 2012/18/EU --- ISO 45001:2018 standard --- emerging risk --- major accident --- manufacturing --- occupational accident --- risk management --- manufacturing industry --- bow-tie analysis --- pallet mover accidents --- accident analysis --- safety barriers --- sheet metal forming --- flanging --- hole-flanging --- incremental sheet forming --- Single Point Incremental Forming (SPIF) --- thickness distribution --- additive manufacturing and 3D printing --- advances and innovations in manufacturing processes --- sustainable and green manufacturing --- manufacturing systems: machines --- equipment and tooling --- metrology and quality in manufacturing --- product lifecycle management (PLM) technologies --- risks
Choose an application
This book derives from the Special Issue of the Manufacturing Engineering Society (MES) that was launched as a Special Issue of the journal Materials. The 48 contributions, published in this book, explore the evolution of traditional manufacturing models toward the new requirements of the Manufacturing Industry 4.0 and present cutting-edge advances in the field of Manufacturing Engineering focusing on additive manufacturing and 3D printing, advances and innovations in manufacturing processes, sustainable and green manufacturing, manufacturing systems (machines, equipment and tooling), metrology and quality in manufacturing, Industry 4.0, product lifecycle management (PLM) technologies, and production planning and risks.
History of engineering & technology --- ultrasonic metal welding --- finite element analysis --- temperature distribution --- strength of the joint in tension --- heat flux --- friction --- plastic deformation --- thermocouple --- WEDM --- deep learning --- deep neural networks --- Industry 4.0 --- crash boxes --- joining by forming --- resistance spot-welding --- crashworthiness --- UNS A92024 --- WC–Co --- wear mechanism --- tribology --- adhesion --- laser --- additive manufacturing --- laser beam machining --- laser polishing --- waviness --- roughness --- Inconel 718 --- Ti6Al4V alloy --- chip geometry --- dry machining --- parametric models --- turning --- UNS A92024-T3 --- corrosion --- surface integrity --- Ra --- residual stress --- functional performance --- ultimate tensile strength --- wear --- drilling --- machining --- dry drilling --- stack --- FML --- CFRP --- UNS A97075 --- stepped shaft --- cross wedge rolling --- plastic flow kinetic theories --- variable cone angle billets --- near-net forming --- gear manufacturing --- roughness model --- multitasking machines/multiprocess machines --- NEXAFS --- soft X-rays SXR --- SXR absorption spectroscopy --- respiratory movement --- lung tumor --- radiotherapy --- arduino --- cancer treatment --- linear accelerator --- ultrasonic molding --- microchannel --- thin-wall plate --- replicability --- polystyrene --- medical devices --- FDM --- PLA --- material color --- pigmentation --- extrusion temperature --- humidity --- micro-manufacturing --- manufacturing systems --- production planning --- polylactide (PLA) --- acrylonitrile butadiene styrene (ABS) --- tensile behaviour --- layer height --- infill density --- layer orientation --- cybernetics --- system dynamics --- production management --- maintenance management --- Viable System Model --- automotive industry --- hybrid components stack --- titanium --- magnesium --- repair and maintenance operations --- roughness average (Ra) --- ANOVA --- in-process measurement --- geometric accuracy --- grinding process --- tapered roller bearings --- single --- point --- incremental --- forming --- thermoplastics --- biocompatible --- temperature --- process --- parameters --- 3D printing --- correlation coefficients --- fused deposition modeling --- non-parametric tests --- surface roughness --- LMD --- laser metal deposition --- shielding gas --- argon --- helium --- melt pool temperature --- synthetic polymer --- bioprinting --- multi-material microextrusion --- bioink --- Selective Laser Melting --- thermo fluidic --- phase change --- consolidation --- Arbitrary Lagrangean–Eulerian Method --- metallic powder --- basalt fiber reinforced plastic (BFRP) --- delamination --- edge trimming --- tool wear --- scaffold --- PCL --- RepRap --- fused filament fabrication --- three-dimensional --- cell culture --- design --- topological optimization --- cost --- stock --- spare parts --- free-form filament fabrication (FFF) --- robot-assisted polishing --- force signal --- end point detection --- WAAM --- GMAW --- cold metal transfer --- hardness --- mechanical properties --- thermal input --- microstructure --- Synchrotron X-rays --- lithography --- curved substrate --- microstructures --- computed tomography --- surface extraction --- Canny algorithm --- Deriche algorithm --- carbon fiber reinforced polymer --- hole quality characteristics --- geometrical parameters --- roughness parameters --- taper --- heat affected zone --- product lifecycle management (PLM) --- manufacturing problem solving (MPS) --- fault diagnosis --- smart factory --- process failure mode and effect analysis (PFMEA) --- case-based reasoning (CBR) --- hole making --- surface texture --- contact measurement --- optical measurement --- delphi prospection --- education --- employment --- feature-based modeling --- inspection planning --- dimensional and geometrical specification --- process specification --- collaborative and integrated product-process development --- modeling --- laser processing --- simulation --- pyrometer --- aluminum --- brain --- rapid prototyping --- atlas --- rat --- magnetic resonance imaging --- educative model --- scaffolds --- porosity --- pore size --- multiobjective optimization --- priority dispatching rules --- simulation optimization --- job shop scheduling --- flexible manufacturing systems --- service-oriented manufacturing systems --- maintenance --- aircrat engine repair and overhaul (MRO) --- incremental forming --- FEM --- force prediction --- numerical model --- semi-analytical model --- specific energy --- welding distortion --- LSND (low stress no distortion) --- htTTT --- model validation --- Compression-After-Impact testing --- Compression-After-Impact strength --- carbon fiber reinforced plastics --- flat specimen --- AA7075 --- risk assessment --- dangerous substance --- Directive 89/391/EEC --- Directive 2012/18/EU --- ISO 45001:2018 standard --- emerging risk --- major accident --- manufacturing --- occupational accident --- risk management --- manufacturing industry --- bow-tie analysis --- pallet mover accidents --- accident analysis --- safety barriers --- sheet metal forming --- flanging --- hole-flanging --- incremental sheet forming --- Single Point Incremental Forming (SPIF) --- thickness distribution --- additive manufacturing and 3D printing --- advances and innovations in manufacturing processes --- sustainable and green manufacturing --- manufacturing systems: machines --- equipment and tooling --- metrology and quality in manufacturing --- product lifecycle management (PLM) technologies --- risks
Choose an application
This book derives from the Special Issue of the Manufacturing Engineering Society (MES) that was launched as a Special Issue of the journal Materials. The 48 contributions, published in this book, explore the evolution of traditional manufacturing models toward the new requirements of the Manufacturing Industry 4.0 and present cutting-edge advances in the field of Manufacturing Engineering focusing on additive manufacturing and 3D printing, advances and innovations in manufacturing processes, sustainable and green manufacturing, manufacturing systems (machines, equipment and tooling), metrology and quality in manufacturing, Industry 4.0, product lifecycle management (PLM) technologies, and production planning and risks.
ultrasonic metal welding --- finite element analysis --- temperature distribution --- strength of the joint in tension --- heat flux --- friction --- plastic deformation --- thermocouple --- WEDM --- deep learning --- deep neural networks --- Industry 4.0 --- crash boxes --- joining by forming --- resistance spot-welding --- crashworthiness --- UNS A92024 --- WC–Co --- wear mechanism --- tribology --- adhesion --- laser --- additive manufacturing --- laser beam machining --- laser polishing --- waviness --- roughness --- Inconel 718 --- Ti6Al4V alloy --- chip geometry --- dry machining --- parametric models --- turning --- UNS A92024-T3 --- corrosion --- surface integrity --- Ra --- residual stress --- functional performance --- ultimate tensile strength --- wear --- drilling --- machining --- dry drilling --- stack --- FML --- CFRP --- UNS A97075 --- stepped shaft --- cross wedge rolling --- plastic flow kinetic theories --- variable cone angle billets --- near-net forming --- gear manufacturing --- roughness model --- multitasking machines/multiprocess machines --- NEXAFS --- soft X-rays SXR --- SXR absorption spectroscopy --- respiratory movement --- lung tumor --- radiotherapy --- arduino --- cancer treatment --- linear accelerator --- ultrasonic molding --- microchannel --- thin-wall plate --- replicability --- polystyrene --- medical devices --- FDM --- PLA --- material color --- pigmentation --- extrusion temperature --- humidity --- micro-manufacturing --- manufacturing systems --- production planning --- polylactide (PLA) --- acrylonitrile butadiene styrene (ABS) --- tensile behaviour --- layer height --- infill density --- layer orientation --- cybernetics --- system dynamics --- production management --- maintenance management --- Viable System Model --- automotive industry --- hybrid components stack --- titanium --- magnesium --- repair and maintenance operations --- roughness average (Ra) --- ANOVA --- in-process measurement --- geometric accuracy --- grinding process --- tapered roller bearings --- single --- point --- incremental --- forming --- thermoplastics --- biocompatible --- temperature --- process --- parameters --- 3D printing --- correlation coefficients --- fused deposition modeling --- non-parametric tests --- surface roughness --- LMD --- laser metal deposition --- shielding gas --- argon --- helium --- melt pool temperature --- synthetic polymer --- bioprinting --- multi-material microextrusion --- bioink --- Selective Laser Melting --- thermo fluidic --- phase change --- consolidation --- Arbitrary Lagrangean–Eulerian Method --- metallic powder --- basalt fiber reinforced plastic (BFRP) --- delamination --- edge trimming --- tool wear --- scaffold --- PCL --- RepRap --- fused filament fabrication --- three-dimensional --- cell culture --- design --- topological optimization --- cost --- stock --- spare parts --- free-form filament fabrication (FFF) --- robot-assisted polishing --- force signal --- end point detection --- WAAM --- GMAW --- cold metal transfer --- hardness --- mechanical properties --- thermal input --- microstructure --- Synchrotron X-rays --- lithography --- curved substrate --- microstructures --- computed tomography --- surface extraction --- Canny algorithm --- Deriche algorithm --- carbon fiber reinforced polymer --- hole quality characteristics --- geometrical parameters --- roughness parameters --- taper --- heat affected zone --- product lifecycle management (PLM) --- manufacturing problem solving (MPS) --- fault diagnosis --- smart factory --- process failure mode and effect analysis (PFMEA) --- case-based reasoning (CBR) --- hole making --- surface texture --- contact measurement --- optical measurement --- delphi prospection --- education --- employment --- feature-based modeling --- inspection planning --- dimensional and geometrical specification --- process specification --- collaborative and integrated product-process development --- modeling --- laser processing --- simulation --- pyrometer --- aluminum --- brain --- rapid prototyping --- atlas --- rat --- magnetic resonance imaging --- educative model --- scaffolds --- porosity --- pore size --- multiobjective optimization --- priority dispatching rules --- simulation optimization --- job shop scheduling --- flexible manufacturing systems --- service-oriented manufacturing systems --- maintenance --- aircrat engine repair and overhaul (MRO) --- incremental forming --- FEM --- force prediction --- numerical model --- semi-analytical model --- specific energy --- welding distortion --- LSND (low stress no distortion) --- htTTT --- model validation --- Compression-After-Impact testing --- Compression-After-Impact strength --- carbon fiber reinforced plastics --- flat specimen --- AA7075 --- risk assessment --- dangerous substance --- Directive 89/391/EEC --- Directive 2012/18/EU --- ISO 45001:2018 standard --- emerging risk --- major accident --- manufacturing --- occupational accident --- risk management --- manufacturing industry --- bow-tie analysis --- pallet mover accidents --- accident analysis --- safety barriers --- sheet metal forming --- flanging --- hole-flanging --- incremental sheet forming --- Single Point Incremental Forming (SPIF) --- thickness distribution --- additive manufacturing and 3D printing --- advances and innovations in manufacturing processes --- sustainable and green manufacturing --- manufacturing systems: machines --- equipment and tooling --- metrology and quality in manufacturing --- product lifecycle management (PLM) technologies --- risks
Choose an application
This book derives from the Special Issue of the Manufacturing Engineering Society (MES) that was launched as a Special Issue of the journal Materials. The 48 contributions, published in this book, explore the evolution of traditional manufacturing models toward the new requirements of the Manufacturing Industry 4.0 and present cutting-edge advances in the field of Manufacturing Engineering focusing on additive manufacturing and 3D printing, advances and innovations in manufacturing processes, sustainable and green manufacturing, manufacturing systems (machines, equipment and tooling), metrology and quality in manufacturing, Industry 4.0, product lifecycle management (PLM) technologies, and production planning and risks.
ultrasonic metal welding --- finite element analysis --- temperature distribution --- strength of the joint in tension --- heat flux --- friction --- plastic deformation --- thermocouple --- WEDM --- deep learning --- deep neural networks --- Industry 4.0 --- crash boxes --- joining by forming --- resistance spot-welding --- crashworthiness --- UNS A92024 --- WC–Co --- wear mechanism --- tribology --- adhesion --- laser --- additive manufacturing --- laser beam machining --- laser polishing --- waviness --- roughness --- Inconel 718 --- Ti6Al4V alloy --- chip geometry --- dry machining --- parametric models --- turning --- UNS A92024-T3 --- corrosion --- surface integrity --- Ra --- residual stress --- functional performance --- ultimate tensile strength --- wear --- drilling --- machining --- dry drilling --- stack --- FML --- CFRP --- UNS A97075 --- stepped shaft --- cross wedge rolling --- plastic flow kinetic theories --- variable cone angle billets --- near-net forming --- gear manufacturing --- roughness model --- multitasking machines/multiprocess machines --- NEXAFS --- soft X-rays SXR --- SXR absorption spectroscopy --- respiratory movement --- lung tumor --- radiotherapy --- arduino --- cancer treatment --- linear accelerator --- ultrasonic molding --- microchannel --- thin-wall plate --- replicability --- polystyrene --- medical devices --- FDM --- PLA --- material color --- pigmentation --- extrusion temperature --- humidity --- micro-manufacturing --- manufacturing systems --- production planning --- polylactide (PLA) --- acrylonitrile butadiene styrene (ABS) --- tensile behaviour --- layer height --- infill density --- layer orientation --- cybernetics --- system dynamics --- production management --- maintenance management --- Viable System Model --- automotive industry --- hybrid components stack --- titanium --- magnesium --- repair and maintenance operations --- roughness average (Ra) --- ANOVA --- in-process measurement --- geometric accuracy --- grinding process --- tapered roller bearings --- single --- point --- incremental --- forming --- thermoplastics --- biocompatible --- temperature --- process --- parameters --- 3D printing --- correlation coefficients --- fused deposition modeling --- non-parametric tests --- surface roughness --- LMD --- laser metal deposition --- shielding gas --- argon --- helium --- melt pool temperature --- synthetic polymer --- bioprinting --- multi-material microextrusion --- bioink --- Selective Laser Melting --- thermo fluidic --- phase change --- consolidation --- Arbitrary Lagrangean–Eulerian Method --- metallic powder --- basalt fiber reinforced plastic (BFRP) --- delamination --- edge trimming --- tool wear --- scaffold --- PCL --- RepRap --- fused filament fabrication --- three-dimensional --- cell culture --- design --- topological optimization --- cost --- stock --- spare parts --- free-form filament fabrication (FFF) --- robot-assisted polishing --- force signal --- end point detection --- WAAM --- GMAW --- cold metal transfer --- hardness --- mechanical properties --- thermal input --- microstructure --- Synchrotron X-rays --- lithography --- curved substrate --- microstructures --- computed tomography --- surface extraction --- Canny algorithm --- Deriche algorithm --- carbon fiber reinforced polymer --- hole quality characteristics --- geometrical parameters --- roughness parameters --- taper --- heat affected zone --- product lifecycle management (PLM) --- manufacturing problem solving (MPS) --- fault diagnosis --- smart factory --- process failure mode and effect analysis (PFMEA) --- case-based reasoning (CBR) --- hole making --- surface texture --- contact measurement --- optical measurement --- delphi prospection --- education --- employment --- feature-based modeling --- inspection planning --- dimensional and geometrical specification --- process specification --- collaborative and integrated product-process development --- modeling --- laser processing --- simulation --- pyrometer --- aluminum --- brain --- rapid prototyping --- atlas --- rat --- magnetic resonance imaging --- educative model --- scaffolds --- porosity --- pore size --- multiobjective optimization --- priority dispatching rules --- simulation optimization --- job shop scheduling --- flexible manufacturing systems --- service-oriented manufacturing systems --- maintenance --- aircrat engine repair and overhaul (MRO) --- incremental forming --- FEM --- force prediction --- numerical model --- semi-analytical model --- specific energy --- welding distortion --- LSND (low stress no distortion) --- htTTT --- model validation --- Compression-After-Impact testing --- Compression-After-Impact strength --- carbon fiber reinforced plastics --- flat specimen --- AA7075 --- risk assessment --- dangerous substance --- Directive 89/391/EEC --- Directive 2012/18/EU --- ISO 45001:2018 standard --- emerging risk --- major accident --- manufacturing --- occupational accident --- risk management --- manufacturing industry --- bow-tie analysis --- pallet mover accidents --- accident analysis --- safety barriers --- sheet metal forming --- flanging --- hole-flanging --- incremental sheet forming --- Single Point Incremental Forming (SPIF) --- thickness distribution --- additive manufacturing and 3D printing --- advances and innovations in manufacturing processes --- sustainable and green manufacturing --- manufacturing systems: machines --- equipment and tooling --- metrology and quality in manufacturing --- product lifecycle management (PLM) technologies --- risks
Listing 1 - 10 of 12 | << page >> |
Sort by
|