Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2020 (6)

Listing 1 - 6 of 6
Sort by

Book
Surface Engineering of Biomaterials
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Acceptance or rejection of implanted biomaterials is strongly dependent on an appropriate bio-interface between the biomaterial and its surrounding tissue. Given the fact that most bulk materials only provide mechanical stability for the implant and may not interact with tissues and fluids in vivo, surface modification and engineering of biomaterials plays a significant role towards addressing major clinical unmet challenges. Increasing data showed that altering surface properties including physiochemical, topographical, and mechanical characteristics, is a promising approach to tackle these problems. Surface engineering of biomaterials could influence the subsequent tissue and cellular events such as protein adsorption, cellular recolonization, adhesion, proliferation, migration, and the inflammatory response. Moreover, it could be based on mimicking the complex cell structure and environment or hierarchical nature of the bone. In this case, the design of nano/micrometer patterns and morphologies with control over their properties has been receiving the attention of biomaterial scientists due to the promising results for the relevant biomedical applications. This Special Issue presents original research papers that report on the current state-of-the-art in surface engineering of biomaterials, particularly implants and biomedical devices.


Book
Surface Engineering of Biomaterials
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Acceptance or rejection of implanted biomaterials is strongly dependent on an appropriate bio-interface between the biomaterial and its surrounding tissue. Given the fact that most bulk materials only provide mechanical stability for the implant and may not interact with tissues and fluids in vivo, surface modification and engineering of biomaterials plays a significant role towards addressing major clinical unmet challenges. Increasing data showed that altering surface properties including physiochemical, topographical, and mechanical characteristics, is a promising approach to tackle these problems. Surface engineering of biomaterials could influence the subsequent tissue and cellular events such as protein adsorption, cellular recolonization, adhesion, proliferation, migration, and the inflammatory response. Moreover, it could be based on mimicking the complex cell structure and environment or hierarchical nature of the bone. In this case, the design of nano/micrometer patterns and morphologies with control over their properties has been receiving the attention of biomaterial scientists due to the promising results for the relevant biomedical applications. This Special Issue presents original research papers that report on the current state-of-the-art in surface engineering of biomaterials, particularly implants and biomedical devices.


Book
Surface Engineering of Biomaterials
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Acceptance or rejection of implanted biomaterials is strongly dependent on an appropriate bio-interface between the biomaterial and its surrounding tissue. Given the fact that most bulk materials only provide mechanical stability for the implant and may not interact with tissues and fluids in vivo, surface modification and engineering of biomaterials plays a significant role towards addressing major clinical unmet challenges. Increasing data showed that altering surface properties including physiochemical, topographical, and mechanical characteristics, is a promising approach to tackle these problems. Surface engineering of biomaterials could influence the subsequent tissue and cellular events such as protein adsorption, cellular recolonization, adhesion, proliferation, migration, and the inflammatory response. Moreover, it could be based on mimicking the complex cell structure and environment or hierarchical nature of the bone. In this case, the design of nano/micrometer patterns and morphologies with control over their properties has been receiving the attention of biomaterial scientists due to the promising results for the relevant biomedical applications. This Special Issue presents original research papers that report on the current state-of-the-art in surface engineering of biomaterials, particularly implants and biomedical devices.


Book
Surface Treatment by Laser-Assisted Techniques
Author:
Year: 2020 Publisher: Basel, Switzerland : MDPI - Multidisciplinary Digital Publishing Institute,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book “Surface Treatment by Laser-Assisted Techniques” presents state-of-the-art research applications of lasers for surface modification. Applications in a broad spectrum of fields are presented: the aircraft and automotive sector, the manufacturing industry, sensor development, electronics, biomedical engineering, or the energy sector. Several radiation sources are included, from pulsed lasers in the visible and near-infrared regions to continuous-wave mid-infrared laser sources. The different chapters of the book “Surface Treatment by Laser-Assisted Techniques” cover laser texturing at nanoscale and microscale for modification of hydrophobicity, hydrophilicity, and ice nucleation; the production of palladium, platinum and silver nanoparticles for sensor applications; the texturization of composite bioceramics for improved fixation in bone prosthesis; the surface texturization of natural ceramic materials by scanned laser radiation; the laser ablation of interfaces to enhance adhesion in dissimilar joints; the analysis of material thermoelastic response; and the production of highly polished topographies in pulsed laser surface modification. Moreover, the production of high-entropy alloy/diamond composite coatings, the modellization of the gas-powder injection, and the generation of thermal barrier coatings by laser cladding are reported in the last chapters of this book.

Keywords

Engineering --- Technology --- Pd --- Pt --- FTO --- laser irradiations --- dewetting --- nanoparticles --- surface treatment --- CO2 laser --- scanning system --- granite stone --- dual-beam --- beam shaper --- MPFV method --- laser polishing --- zigzag-square wave --- bioceramics --- laser ablation --- roughness --- composites --- hip joint prosthesis --- cementless cup --- bone --- silver nanoparticles --- electrophoretic deposition --- pulsed laser ablation in liquid --- laser welding --- metal-polymer --- thermal contact resistance --- generalized thermoelasticity --- laser radiation --- volumetric absorption --- thermal stresses --- cooling effect --- laser cladding --- diamond composite coating --- high entropy alloy --- high scanning speed --- wear resistance --- laser-cladding --- La2Zr2O7 thermal barrier coating --- Ni-based superalloy --- high temperature oxidation --- thermal shock --- extreme high-speed laser material deposition (EHLA) --- laser material deposition (LMD) --- coaxial powder nozzle --- coating --- additive manufacturing --- numerical simulation --- hydrothermal treatment --- micro/nano-hierarchical structures --- wetting model --- anti-icing --- History. --- History. --- Pd --- Pt --- FTO --- laser irradiations --- dewetting --- nanoparticles --- surface treatment --- CO2 laser --- scanning system --- granite stone --- dual-beam --- beam shaper --- MPFV method --- laser polishing --- zigzag-square wave --- bioceramics --- laser ablation --- roughness --- composites --- hip joint prosthesis --- cementless cup --- bone --- silver nanoparticles --- electrophoretic deposition --- pulsed laser ablation in liquid --- laser welding --- metal-polymer --- thermal contact resistance --- generalized thermoelasticity --- laser radiation --- volumetric absorption --- thermal stresses --- cooling effect --- laser cladding --- diamond composite coating --- high entropy alloy --- high scanning speed --- wear resistance --- laser-cladding --- La2Zr2O7 thermal barrier coating --- Ni-based superalloy --- high temperature oxidation --- thermal shock --- extreme high-speed laser material deposition (EHLA) --- laser material deposition (LMD) --- coaxial powder nozzle --- coating --- additive manufacturing --- numerical simulation --- hydrothermal treatment --- micro/nano-hierarchical structures --- wetting model --- anti-icing


Book
Surface Treatment by Laser-Assisted Techniques
Author:
Year: 2020 Publisher: Basel, Switzerland : MDPI - Multidisciplinary Digital Publishing Institute,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book “Surface Treatment by Laser-Assisted Techniques” presents state-of-the-art research applications of lasers for surface modification. Applications in a broad spectrum of fields are presented: the aircraft and automotive sector, the manufacturing industry, sensor development, electronics, biomedical engineering, or the energy sector. Several radiation sources are included, from pulsed lasers in the visible and near-infrared regions to continuous-wave mid-infrared laser sources. The different chapters of the book “Surface Treatment by Laser-Assisted Techniques” cover laser texturing at nanoscale and microscale for modification of hydrophobicity, hydrophilicity, and ice nucleation; the production of palladium, platinum and silver nanoparticles for sensor applications; the texturization of composite bioceramics for improved fixation in bone prosthesis; the surface texturization of natural ceramic materials by scanned laser radiation; the laser ablation of interfaces to enhance adhesion in dissimilar joints; the analysis of material thermoelastic response; and the production of highly polished topographies in pulsed laser surface modification. Moreover, the production of high-entropy alloy/diamond composite coatings, the modellization of the gas-powder injection, and the generation of thermal barrier coatings by laser cladding are reported in the last chapters of this book.


Book
Surface Treatment by Laser-Assisted Techniques
Author:
Year: 2020 Publisher: Basel, Switzerland : MDPI - Multidisciplinary Digital Publishing Institute,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book “Surface Treatment by Laser-Assisted Techniques” presents state-of-the-art research applications of lasers for surface modification. Applications in a broad spectrum of fields are presented: the aircraft and automotive sector, the manufacturing industry, sensor development, electronics, biomedical engineering, or the energy sector. Several radiation sources are included, from pulsed lasers in the visible and near-infrared regions to continuous-wave mid-infrared laser sources. The different chapters of the book “Surface Treatment by Laser-Assisted Techniques” cover laser texturing at nanoscale and microscale for modification of hydrophobicity, hydrophilicity, and ice nucleation; the production of palladium, platinum and silver nanoparticles for sensor applications; the texturization of composite bioceramics for improved fixation in bone prosthesis; the surface texturization of natural ceramic materials by scanned laser radiation; the laser ablation of interfaces to enhance adhesion in dissimilar joints; the analysis of material thermoelastic response; and the production of highly polished topographies in pulsed laser surface modification. Moreover, the production of high-entropy alloy/diamond composite coatings, the modellization of the gas-powder injection, and the generation of thermal barrier coatings by laser cladding are reported in the last chapters of this book.

Listing 1 - 6 of 6
Sort by