Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2020 (4)

Listing 1 - 4 of 4
Sort by

Book
Evolutionary Algorithms in Intelligent Systems
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Evolutionary algorithms and metaheuristics are widely used to provide efficient and effective approximate solutions to computationally hard optimization problems. With the widespread use of intelligent systems in recent years, evolutionary algorithms have been applied, beyond classical optimization problems, to AI system parameter optimization and the design of artificial neural networks and feature selection in machine learning systems. This volume will present recent results of applications of the most successful metaheuristics, from differential evolution and particle swarm optimization to artificial neural networks, loT allocation, and multi-objective optimization problems. It will also provide a broad view of the role and the potential of evolutionary algorithms as service components in Al systems.


Book
Evolutionary Algorithms in Intelligent Systems
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Evolutionary algorithms and metaheuristics are widely used to provide efficient and effective approximate solutions to computationally hard optimization problems. With the widespread use of intelligent systems in recent years, evolutionary algorithms have been applied, beyond classical optimization problems, to AI system parameter optimization and the design of artificial neural networks and feature selection in machine learning systems. This volume will present recent results of applications of the most successful metaheuristics, from differential evolution and particle swarm optimization to artificial neural networks, loT allocation, and multi-objective optimization problems. It will also provide a broad view of the role and the potential of evolutionary algorithms as service components in Al systems.


Book
Evolutionary Algorithms in Intelligent Systems
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Evolutionary algorithms and metaheuristics are widely used to provide efficient and effective approximate solutions to computationally hard optimization problems. With the widespread use of intelligent systems in recent years, evolutionary algorithms have been applied, beyond classical optimization problems, to AI system parameter optimization and the design of artificial neural networks and feature selection in machine learning systems. This volume will present recent results of applications of the most successful metaheuristics, from differential evolution and particle swarm optimization to artificial neural networks, loT allocation, and multi-objective optimization problems. It will also provide a broad view of the role and the potential of evolutionary algorithms as service components in Al systems.


Book
Artificial Intelligence for Smart and Sustainable Energy Systems and Applications
Authors: ---
ISBN: 3039288903 303928889X Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Energy has been a crucial element for human beings and sustainable development. The issues of global warming and non-green energy have yet to be resolved. This book is a collection of twelve articles that provide strong evidence for the success of artificial intelligence deployment in energy research, particularly research devoted to non-intrusive load monitoring, network, and grid, as well as other emerging topics. The presented artificial intelligence algorithms may provide insight into how to apply similar approaches, subject to fine-tuning and customization, to other unexplored energy research. The ultimate goal is to fully apply artificial intelligence to the energy sector. This book may serve as a guide for professionals, researchers, and data scientists—namely, how to share opinions and exchange ideas so as to facilitate a better fusion of energy, academic, and industry research, and improve in the quality of people's daily life activities.

Listing 1 - 4 of 4
Sort by