Listing 1 - 10 of 25 | << page >> |
Sort by
|
Choose an application
Electrochemical capacitors are being increasingly introduced in energy storage devices, for example, in automobiles, renewable energies, and mobile terminals. This book includes five high-quality papers that can lead to technological developments in electrochemical capacitors. The first paper describes the effect of the milling degree of activated carbon particles used in the electrodes on the supercapacitive performance of an electric double-layer capacitor. The second, fourth, and fifth papers describe novel electrode materials that have the potential to enhance the performance of next-generation electrochemical capacitors. Nickel molybdate/reduced graphene oxide nanocomposite, copper-decorated carbon nanotubes, and nickel hydroxide/activated carbon composite are tested, and are shown to be promising candidates for next-generation electrochemical capacitors. The third paper reports the hybrid utilization of electrochemical capacitors with other types of energy devices (photovoltaics, fuel cells, and batteries) in a DC microgrid, which ensures wider applications of electrochemical capacitors in the near future. The knowledge and experience in this book are beneficial in manufacturing and utilizing electrochemical capacitors. Cutting-edge knowledge related to novel electrode nano-materials is also helpful to design next-generation electrochemical capacitors. This book delivers useful information to specialists involved in energy storage technologies.
History of engineering & technology --- CNT --- copper --- composite --- energy storage --- DC microgrid --- energy management --- hybrid power system --- energy efficiency --- nickel-cobalt hydroxide --- activated carbon --- hybrid capacitor prototype case study --- KOH aqueous electrolyte energy storage device --- coin-cell prototype --- electrochemical performance --- starch --- porous structure --- NiMoO4/3D-rGO nanocomposite --- NiMoO4 NPs --- ball milling --- electric double-layer capacitor --- supercapacitor --- electrode --- specific capacitance --- energy density --- power density
Choose an application
Electrochemical capacitors are being increasingly introduced in energy storage devices, for example, in automobiles, renewable energies, and mobile terminals. This book includes five high-quality papers that can lead to technological developments in electrochemical capacitors. The first paper describes the effect of the milling degree of activated carbon particles used in the electrodes on the supercapacitive performance of an electric double-layer capacitor. The second, fourth, and fifth papers describe novel electrode materials that have the potential to enhance the performance of next-generation electrochemical capacitors. Nickel molybdate/reduced graphene oxide nanocomposite, copper-decorated carbon nanotubes, and nickel hydroxide/activated carbon composite are tested, and are shown to be promising candidates for next-generation electrochemical capacitors. The third paper reports the hybrid utilization of electrochemical capacitors with other types of energy devices (photovoltaics, fuel cells, and batteries) in a DC microgrid, which ensures wider applications of electrochemical capacitors in the near future. The knowledge and experience in this book are beneficial in manufacturing and utilizing electrochemical capacitors. Cutting-edge knowledge related to novel electrode nano-materials is also helpful to design next-generation electrochemical capacitors. This book delivers useful information to specialists involved in energy storage technologies.
CNT --- copper --- composite --- energy storage --- DC microgrid --- energy management --- hybrid power system --- energy efficiency --- nickel-cobalt hydroxide --- activated carbon --- hybrid capacitor prototype case study --- KOH aqueous electrolyte energy storage device --- coin-cell prototype --- electrochemical performance --- starch --- porous structure --- NiMoO4/3D-rGO nanocomposite --- NiMoO4 NPs --- ball milling --- electric double-layer capacitor --- supercapacitor --- electrode --- specific capacitance --- energy density --- power density
Choose an application
Electrochemical capacitors are being increasingly introduced in energy storage devices, for example, in automobiles, renewable energies, and mobile terminals. This book includes five high-quality papers that can lead to technological developments in electrochemical capacitors. The first paper describes the effect of the milling degree of activated carbon particles used in the electrodes on the supercapacitive performance of an electric double-layer capacitor. The second, fourth, and fifth papers describe novel electrode materials that have the potential to enhance the performance of next-generation electrochemical capacitors. Nickel molybdate/reduced graphene oxide nanocomposite, copper-decorated carbon nanotubes, and nickel hydroxide/activated carbon composite are tested, and are shown to be promising candidates for next-generation electrochemical capacitors. The third paper reports the hybrid utilization of electrochemical capacitors with other types of energy devices (photovoltaics, fuel cells, and batteries) in a DC microgrid, which ensures wider applications of electrochemical capacitors in the near future. The knowledge and experience in this book are beneficial in manufacturing and utilizing electrochemical capacitors. Cutting-edge knowledge related to novel electrode nano-materials is also helpful to design next-generation electrochemical capacitors. This book delivers useful information to specialists involved in energy storage technologies.
History of engineering & technology --- CNT --- copper --- composite --- energy storage --- DC microgrid --- energy management --- hybrid power system --- energy efficiency --- nickel-cobalt hydroxide --- activated carbon --- hybrid capacitor prototype case study --- KOH aqueous electrolyte energy storage device --- coin-cell prototype --- electrochemical performance --- starch --- porous structure --- NiMoO4/3D-rGO nanocomposite --- NiMoO4 NPs --- ball milling --- electric double-layer capacitor --- supercapacitor --- electrode --- specific capacitance --- energy density --- power density
Choose an application
Electric power systems are headed for a true changing of the guard, due to the urgent need for achieving sustainable energy delivery. Fortunately, the development of new technologies is driving the transition of power systems toward a carbon-free paradigm while maintaining the current standards of quality, efficiency, and resilience. The introduction of HVDC and FACTS in the 20th century, taking advantage of dramatic improvements in power electronics and control, gave rise to unprecedented levels of flexibility and speed of response in comparison with traditional electromechanical devices. This flexibility is nowadays required more than ever in order to solve a puzzle with pieces that do not always fit perfectly. This Special Issue aims to address the role that FACTS and HVDC systems can play in helping electric power systems face the challenges of the near future.
History of engineering & technology --- VSC-HVDC --- unbalanced grid conditions --- double frequency ripples --- power compensation --- passive-based control --- disturbance observer --- dynamic capacitor --- inductive unbalanced load --- reactive power compensation --- imbalance suppression --- compensation ability --- HVDC transmission --- hybrid multi-terminal HVDC --- LCC --- MTDC --- power system analysis --- VSC --- breakers --- hybrid DC circuit breaker --- fault current limiters --- non-superconducting fault current limiters --- current-limiting inductors --- voltage source converter --- FACTS --- grid services --- CHIL --- PHIL --- lab testing --- field testing --- standards --- STATCOM --- replica --- review --- korean power system --- subsynchronous resonance (SSR) --- synchronous voltage reversal (SVR) --- thyristor controlled series capacitor (TCSC) --- test signal method --- virtual synchronous machine --- synchronous power controller --- power quality --- harmonics --- hybrid power quality compensation system --- the thyristor-controlled L and C-type filter (TCL-CTF) --- ancillary services --- HVDC systems --- loss management --- frequency control --- voltage and reactive power control --- black start --- congestion management --- distribution networks --- hybrid AC/DC networks --- power systems --- high voltage direct current (HVDC) transmission --- HVDC systems based on voltage source converters (VSC-HVDC) --- multi-terminal --- transient stability --- control strategies --- communication latency --- power oscillations --- UPFC --- non-linear control --- neural network --- model reference control --- High voltage direct current (HVDC) --- continuous commutation failures --- DC blocking --- emergency power support --- stability
Choose an application
Electric power systems are headed for a true changing of the guard, due to the urgent need for achieving sustainable energy delivery. Fortunately, the development of new technologies is driving the transition of power systems toward a carbon-free paradigm while maintaining the current standards of quality, efficiency, and resilience. The introduction of HVDC and FACTS in the 20th century, taking advantage of dramatic improvements in power electronics and control, gave rise to unprecedented levels of flexibility and speed of response in comparison with traditional electromechanical devices. This flexibility is nowadays required more than ever in order to solve a puzzle with pieces that do not always fit perfectly. This Special Issue aims to address the role that FACTS and HVDC systems can play in helping electric power systems face the challenges of the near future.
VSC-HVDC --- unbalanced grid conditions --- double frequency ripples --- power compensation --- passive-based control --- disturbance observer --- dynamic capacitor --- inductive unbalanced load --- reactive power compensation --- imbalance suppression --- compensation ability --- HVDC transmission --- hybrid multi-terminal HVDC --- LCC --- MTDC --- power system analysis --- VSC --- breakers --- hybrid DC circuit breaker --- fault current limiters --- non-superconducting fault current limiters --- current-limiting inductors --- voltage source converter --- FACTS --- grid services --- CHIL --- PHIL --- lab testing --- field testing --- standards --- STATCOM --- replica --- review --- korean power system --- subsynchronous resonance (SSR) --- synchronous voltage reversal (SVR) --- thyristor controlled series capacitor (TCSC) --- test signal method --- virtual synchronous machine --- synchronous power controller --- power quality --- harmonics --- hybrid power quality compensation system --- the thyristor-controlled L and C-type filter (TCL-CTF) --- ancillary services --- HVDC systems --- loss management --- frequency control --- voltage and reactive power control --- black start --- congestion management --- distribution networks --- hybrid AC/DC networks --- power systems --- high voltage direct current (HVDC) transmission --- HVDC systems based on voltage source converters (VSC-HVDC) --- multi-terminal --- transient stability --- control strategies --- communication latency --- power oscillations --- UPFC --- non-linear control --- neural network --- model reference control --- High voltage direct current (HVDC) --- continuous commutation failures --- DC blocking --- emergency power support --- stability
Choose an application
Electric power systems are headed for a true changing of the guard, due to the urgent need for achieving sustainable energy delivery. Fortunately, the development of new technologies is driving the transition of power systems toward a carbon-free paradigm while maintaining the current standards of quality, efficiency, and resilience. The introduction of HVDC and FACTS in the 20th century, taking advantage of dramatic improvements in power electronics and control, gave rise to unprecedented levels of flexibility and speed of response in comparison with traditional electromechanical devices. This flexibility is nowadays required more than ever in order to solve a puzzle with pieces that do not always fit perfectly. This Special Issue aims to address the role that FACTS and HVDC systems can play in helping electric power systems face the challenges of the near future.
History of engineering & technology --- VSC-HVDC --- unbalanced grid conditions --- double frequency ripples --- power compensation --- passive-based control --- disturbance observer --- dynamic capacitor --- inductive unbalanced load --- reactive power compensation --- imbalance suppression --- compensation ability --- HVDC transmission --- hybrid multi-terminal HVDC --- LCC --- MTDC --- power system analysis --- VSC --- breakers --- hybrid DC circuit breaker --- fault current limiters --- non-superconducting fault current limiters --- current-limiting inductors --- voltage source converter --- FACTS --- grid services --- CHIL --- PHIL --- lab testing --- field testing --- standards --- STATCOM --- replica --- review --- korean power system --- subsynchronous resonance (SSR) --- synchronous voltage reversal (SVR) --- thyristor controlled series capacitor (TCSC) --- test signal method --- virtual synchronous machine --- synchronous power controller --- power quality --- harmonics --- hybrid power quality compensation system --- the thyristor-controlled L and C-type filter (TCL-CTF) --- ancillary services --- HVDC systems --- loss management --- frequency control --- voltage and reactive power control --- black start --- congestion management --- distribution networks --- hybrid AC/DC networks --- power systems --- high voltage direct current (HVDC) transmission --- HVDC systems based on voltage source converters (VSC-HVDC) --- multi-terminal --- transient stability --- control strategies --- communication latency --- power oscillations --- UPFC --- non-linear control --- neural network --- model reference control --- High voltage direct current (HVDC) --- continuous commutation failures --- DC blocking --- emergency power support --- stability
Choose an application
Electrochemical energy storage is a key element of systems in a wide range of sectors, such as electro-mobility, portable devices, and renewable energy. The energy storage systems (ESSs) considered here are batteries, supercapacitors, and hybrid components such as lithium-ion capacitors. The durability of ESSs determines the total cost of ownership, the global impacts (lifecycle) on a large portion of these applications and, thus, their viability. Understanding ESS aging is a key to optimizing their design and usability in terms of their intended applications. Knowledge of ESS aging is also essential to improve their dependability (reliability, availability, maintainability, and safety). This Special Issue includes 12 research papers and 1 review article focusing on battery, supercapacitor, and hybrid capacitor aging.
n/a --- abuse test --- thermal runaway --- lifetime --- Li-Ion battery --- lithium-ion capacitor --- langmuir isotherm --- battery management system (BMS) --- cycling ageing --- degradation --- remaining capacity --- selection algorithm --- electric vehicle --- safety --- LFP --- state-of-charge determination --- cathode-electrolyte interphase --- state-of-health (SOH) --- incremental capacity analysis (ICA) --- lamination --- capacitance --- lead-acid batteries --- self-discharge --- fast-charging capability --- second life battery --- ampere-hour throughput --- incremental capacity analysis --- state of health (SoH) --- impedance spectroscopy --- partial coulometric counter --- Ni-rich cathode --- calendar ageing --- driving cycles --- pseudo-charge --- state-of-health --- accelerated ageing --- lithium iron phosphate --- calendar aging --- electrochemical impedance spectroscopy --- electric vehicles --- lifetime prediction --- Petri nets --- battery --- electro mobility --- floating aging --- aging mechanisms --- LiFePO4 --- autonomous devices --- temperature --- electrical characterization --- cell degradation --- lithium-ion battery --- ageing --- battery management system --- NMC --- batteries --- lithium-ion --- state-of-charge monitoring --- operative dependability --- aging model --- battery life testing --- aging --- embedded algorithm --- post-mortem analysis --- supercapacitor
Choose an application
The advent of graphene and, more recently, two-dimensional materials has opened new perspectives in electronics, optoelectronics, energy harvesting, and sensing applications. This book, based on a Special Issue published in Nanomaterials – MDPI covers experimental, simulation, and theoretical research on 2D materials and their van der Waals heterojunctions. The emphasis is the physical properties and the applications of 2D materials in state-of-the-art sensors and electronic or optoelectronic devices.
Technology: general issues --- ZnO/WS2 --- ZnO/WSe2 --- photocatalysis --- hybrid density functional --- copper vanadate --- photoanode --- water splitting --- graphene oxide --- Stone–Wales defected graphene --- half-metallocene --- adsorption energy --- density of states --- and magnetic property --- palladium selenide monolayer --- physical properties --- light-harvesting performance --- type-II heterostructure --- first principles calculations --- 2D materials --- field effect transistors --- PMMA --- tungsten diselenide --- graphene/MoS2 heterostructure --- optical properties --- electronic structure --- Layer-dependent --- Indium Selenide --- density functional theory --- work function --- MXene --- Ti3C2Tx --- transition metal dichalcogenides --- surface plasmon resonance --- sensitivity --- CdS/g-C3N4 --- strain-tunable --- WS2 --- large-area --- CVD --- fluorescence emission --- Raman mapping --- mechanical behaviors --- electronic properties --- photocatalytic properties --- graphene --- Schottky barrier --- diode --- photodetector --- heterojunction --- MOS (Metal Oxide Semiconductor) capacitor --- responsivity --- transition metal dichalcogenide --- van der Waals heterostructure --- photodetection --- photovoltaics
Choose an application
This highly informative and carefully presented book covers the most recent advances as well as comprehensive reviews addressing novel and state-of-the-art topics from active researchers in innovative advanced materials and hybrid materials, concerning not only their synthesis, preparation, and characterization but especially focusing on the applications of such materials with outstanding performance.
Technology: general issues --- non-isothermal crystallisation kinetics --- multi-modal polymer --- graphene-based polymer nanocomposite --- carbon black fillers. --- n/a --- Li4Ti5O12 --- magnesium batteries --- cathodes --- MgCl2 --- garnet --- dual substitution --- spark plasma sintering --- conductivity --- activated carbon --- steam activation --- low-density polyethylene --- electric double layer capacitor --- solid fluoride electrolytes --- ceramics --- LaF3 --- fluorine-ion batteries --- metal current collectors --- electrochemical stability --- cyclic voltammetry --- copper-manganese alloy --- energy storage --- supercapacitor --- graphitic carbon nitride --- TiO2 nanotube --- MoS2 --- Al2O3 --- atomic layer deposition --- Li-ion microbatteries --- nano-catalyst --- noble metals --- TUD-1 --- mesoporous silica --- CO-oxidation --- air purification --- W2C --- WS2 --- hydrothermal --- nanoflowers --- lithium-ion batteries --- CdTe --- nanocrystal --- solar cells --- Spiro --- biomass carbon electrodes --- battery and supercapacitors --- structure–performance relationship --- Lithium-ion batteries --- LiMn2O4 nanoparticles --- Mg-doped --- kinetic and thermodynamic --- thermogravimetric analysis --- Pechini-type sol–gel process --- structure-performance relationship --- Pechini-type sol-gel process
Choose an application
This Special Issue focuses on the state-of-the-art results from the definition and design of filters for low- and high-frequency applications and systems. Different technologies and solutions are commonly adopted for filter definition, from electrical to electromechanical and mechanical solutions, from passive to active devices, and from hybrid to integrated designs. Aspects related to both theoretical and experimental research in filter design, CAD modeling and novel technologies and applications, as well as filter fabrication, characterization and testing, are covered. The proposed research articles deal with different topics as follows: Modeling, design and simulation of filters; Processes and fabrication technologies for filters; Automated characterization and test of filters; Voltage and current mode filters; Integrated and discrete filters; Passive and active filters; Variable filters, characterization and tunability.
History of engineering & technology --- analogue-to-digital conversion --- ATHOS soft X-ray beamline --- broadband noise --- Hall probe --- offset fluctuation and drift --- three-axis teslameter --- undulator --- power line communication (PLC) --- conducted disturbances --- anti-interference filter --- smart home --- low-pass filter (LPF) --- stepped impedance resonator (SIR) --- hairpin resonator --- internal coupling --- defected ground structure (DGS) --- current mode --- universal filter --- VCII --- voltage conveyor --- SIMO filter --- microwave dielectric ceramics --- filter --- additive manufacturing --- digital light processing --- post annealing --- dielectric properties --- wideband --- bandpass filter --- quarter wavelength --- stepped-impedance resonator (SIR) --- ultra-wideband --- stub-loaded --- stepped impedance resonator --- active filters --- anti-aliasing filters --- HBT --- inductorless --- low-pass filters --- SiGe --- switched-capacitor filters --- low-voltage --- finFET --- operational amplifier --- voltage-controlled oscillator --- unity-gain bandwidth --- varactor --- total harmonic distortion --- phase noise --- active inductor --- MMIC --- tunable filters
Listing 1 - 10 of 25 | << page >> |
Sort by
|