Listing 1 - 10 of 10 |
Sort by
|
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
ions --- radicals --- metastable atoms --- plasma chemistry --- synchrotron radiation --- astrochemistry
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Science: general issues --- ions --- radicals --- metastable atoms --- plasma chemistry --- synchrotron radiation --- astrochemistry --- ions --- radicals --- metastable atoms --- plasma chemistry --- synchrotron radiation --- astrochemistry
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Science: general issues --- ions --- radicals --- metastable atoms --- plasma chemistry --- synchrotron radiation --- astrochemistry
Choose an application
"The creation of the Canadian Light Source in Saskatoon, which began operation in 2004, was the largest science project in Canada in the last fifty years. The multi-beam facility operates over five thousand hours per year for over one thousand Canadian and international users from a wide range of science, medical and engineering disciplines. This book describes the decades of intense research from many scientists to justify this project; the remarkable and unprecedented collaboration and cooperation of governments, universities, and industries across Canada; and the resulting outstanding research covering many areas of the physical, biological, medical, and agricultural sciences. With personal accounts and frank narration, this book describes the long history from 1934-2001 leading to the CLS, beginning in Saskatoon in the 1930s. The major part of the book details the remarkable and unselfish collaboration and cooperation of a few hundred people from Canadian and international universities, governments, and industry, showcasing how the Canadian Light Source represents pure and applied research at its finest."--
Synchrotrons. --- Canadian Light Source --- History. --- Saskatchewan --- Canada. --- Canadian. --- Saskatchewan. --- accelerator. --- council. --- diffraction. --- engineering research. --- foundation. --- imaging. --- infrared. --- innovation. --- national research. --- natural sciences. --- spectroscopy. --- synchrotron radiation. --- x-rays.
Choose an application
This book is a printed edition of the Special Issue of Crystals entitled Pressure-Induced Phase Transformations. It includes selected articles on the behavior of matter under high-pressure and high-temperature conditions, describing and discussing contemporary achievements, which were selected based on their relevance and scientific quality.
Research & information: general --- vanadate --- zircon --- high pressure --- band gap --- phase transition --- optical absorption --- benzene phase I --- homogeneous melting --- Ostwald’s step rule --- molecular dynamics simulation --- metastable phase --- melting transition --- Fe --- electrical resistivity --- thermal conductivity --- heat flow --- thermal and chemical convection --- sesquioxides --- phase transitions --- Laue diffraction --- mechanisms of phase transitions --- reactivity --- tungsten --- rhenium --- carbon dioxide --- carbonates --- high-pressure high-temperature experiments --- quantum spin liquids --- frustrated magnets --- quantum phase transitions --- high-pressure measurements --- phase diagram --- quantum molecular dynamics --- melting curve --- Z methodology --- multi-phase materials --- epsomite --- dehydration reaction --- Raman spectra --- electrical conductivity --- high-pressure phase transitions --- molecular crystals --- computational methods --- DFT and Force Field methods --- energy calculations --- intermolecular interactions --- Landau theory --- nonlinear elasticity theory --- perovskites --- fullerenes --- polymerization --- pressure-induced --- Raman --- infrared laser --- laser-heated diamond anvil cell --- synchrotron radiation --- extreme conditions --- vanadate --- zircon --- high pressure --- band gap --- phase transition --- optical absorption --- benzene phase I --- homogeneous melting --- Ostwald’s step rule --- molecular dynamics simulation --- metastable phase --- melting transition --- Fe --- electrical resistivity --- thermal conductivity --- heat flow --- thermal and chemical convection --- sesquioxides --- phase transitions --- Laue diffraction --- mechanisms of phase transitions --- reactivity --- tungsten --- rhenium --- carbon dioxide --- carbonates --- high-pressure high-temperature experiments --- quantum spin liquids --- frustrated magnets --- quantum phase transitions --- high-pressure measurements --- phase diagram --- quantum molecular dynamics --- melting curve --- Z methodology --- multi-phase materials --- epsomite --- dehydration reaction --- Raman spectra --- electrical conductivity --- high-pressure phase transitions --- molecular crystals --- computational methods --- DFT and Force Field methods --- energy calculations --- intermolecular interactions --- Landau theory --- nonlinear elasticity theory --- perovskites --- fullerenes --- polymerization --- pressure-induced --- Raman --- infrared laser --- laser-heated diamond anvil cell --- synchrotron radiation --- extreme conditions
Choose an application
This handbook presents the development of synchrotron light sources and free-electron lasers as well as new scientific applications. Hardly any other discovery of the nineteenth century had such an impact on science and technology as Wilhelm Conrad Röntgen’s seminal discovery of X-rays in the year 1895. X-ray tubes soon became established as excellent instruments for numerous applications in medicine, biology, materials science and testing, chemistry and even public security. Developing new radiation sources with higher and higher brilliance and much extended spectral range for an ever widening field of research resulted in stunning developments like the electron storage ring and the free-electron laser. This second edition includes both updated chapters and new contributions highlighting the most recent developments in the field. Reports on operation experience of the new FEL facilities are complemented by discussions of new developments in X-ray beamline optics and detectors. Contributions on applications now include high pressure work, catalytic processes and engineering materials, medical applications and studies of cultural heritage. New contributions on IR spectroscopy, resonant inelastic X-ray scattering (RIXS) and studies of liquids complete this second edition. .
Synchrotron radiation --- Surfaces (Physics) --- Physical organic chemistry. --- Chemistry, Physical organic --- Chemistry, Organic --- Chemistry, Physical and theoretical --- Physics --- Surface chemistry --- Surfaces (Technology) --- Bremsstrahlung, Magnetic --- Emission, Synchrotron --- Magnetic bremsstrahlung --- Synchrotron emission --- Electromagnetic waves --- Particles (Nuclear physics) --- Optics. --- Electrodynamics. --- Materials science. --- Physical chemistry. --- Radiology. --- Physical measurements. --- Measurement . --- Biophysics. --- Biological physics. --- Classical Electrodynamics. --- Characterization and Evaluation of Materials. --- Physical Chemistry. --- Imaging / Radiology. --- Measurement Science and Instrumentation. --- Biological and Medical Physics, Biophysics. --- Biological physics --- Biology --- Medical sciences --- Measuring --- Mensuration --- Mathematics --- Technology --- Metrology --- Physical measurements --- Measurements, Physical --- Mathematical physics --- Measurement --- Radiological physics --- Radiation --- Chemistry, Theoretical --- Physical chemistry --- Theoretical chemistry --- Chemistry --- Material science --- Physical sciences --- Dynamics --- Light --- Radiació sincrotrònica --- Superfícies (Física) --- Química física orgànica --- Física de la superfície --- Física --- Interfícies (Ciències físiques) --- Fisicoquímica orgànica --- Química orgànica física --- Química física --- Química orgànica --- Bioquímica física --- Fotoquímica orgànica --- Emissió de sincrotró --- Emissió sincrotrònica --- Radiació de sincrotró --- Ones electromagnètiques --- Física de partícules --- Sincrotrons --- Materials --- Measurement. --- Measuring instruments. --- Characterization and Analytical Technique. --- Analysis. --- Instruments, Measuring --- Measuring tools --- Scientific apparatus and instruments --- Instruments
Choose an application
Fracture, fatigue, and other subcritical processes, such as creep crack growth or stress corrosion cracking, present numerous open issues from both scientific and industrial points of view. These phenomena are of special interest in industrial and civil metallic structures, such as pipes, vessels, machinery, aircrafts, ship hulls, and bridges, given that their failure may imply catastrophic consequences for human life, the natural environment, and/or the economy. Moreover, an adequate management of their operational life, defining suitable inspection periods, repairs, or replacements, requires their safety or unsafety conditions to be defined. The analysis of these technological challenges requires accurate comprehensive assessment tools based on solid theoretical foundations as well as structural integrity assessment standards or procedures incorporating such tools into industrial practice.
n/a --- reuse --- microstructure --- fatigue crack growth --- micromechanisms --- weld joint --- FFM --- slow strain rate tensile test --- fracture --- orthotropic steel bridge deck --- fatigue --- three-point bending fatigue --- EMC --- notch effect --- thermal desorption spectroscopy --- synchrotron radiation --- tube specimen with hole --- critical distance --- Inconel 690 tube --- fatigue test --- failure assessment diagram (FAD) --- alloy steel --- X-ray techniques --- overload --- aluminium plates --- fatigue strength --- fastener --- high strength low alloy steels (HSLA) --- internal fatigue fracture --- ?CT imaging --- hydrogen induced cracking (HIC) --- notch --- rotating bending --- local strain --- aluminum foam sandwich --- structural steel --- surface defect --- compressive residual stress --- blunt V-notches --- cathodic polarization --- needle peening --- semi-elliptical crack --- fatigue life --- hydrogen-induced delayed fracture --- fatigue design curve --- subcritical propagation --- cathodic polarization or cathodic charge (CC) --- hydrogen embrittlement --- aircraft --- fatigue limit --- environmentally assisted cracking --- ductile failure --- mode I loading --- cathodic protection (CP) --- peel strength --- hot-press-formed steel --- crack initiation --- retardation --- theory of critical distances --- welded joint
Choose an application
Synchrotron radiation has been a revolutionary and invaluable research tool for a wide range of scientists, including chemists, biologists, physicists, materials scientists, geophysicists. It has also found multidisciplinary applications with problems ranging from archeology through cultural heritage to paleontology. The subject of this book is x-ray spectroscopy using synchrotron radiation, and the target audience is both current and potential users of synchrotron facilities. The first half of the book introduces readers to the fundamentals of storage ring operations, the qualities of the synchrotron radiation produced, the x-ray optics required to transport this radiation, and the detectors used for measurements. The second half of the book describes the important spectroscopic techniques that use synchrotron x-rays, including chapters on x-ray absorption, x-ray fluorescence, resonant and non-resonant inelastic x-ray scattering, nuclear spectroscopies, and x-ray photoemission. A final chapter surveys the exciting developments of free electron laser sources, which promise a second revolution in x-ray science. Thanks to the detailed descriptions in the book, prospective users will be able to quickly begin working with these techniques. Experienced users will find useful summaries, key equations, and exhaustive references to key papers in the field, as well as outlines of the historical developments in the field. Along with plentiful illustrations, this work includes access to supplemental Mathematica notebooks, which can be used for some of the more complex calculations and as a teaching aid. This book should appeal to graduate students, postdoctoral researchers, and senior scientists alike.
Spectroscopy. --- Microscopy. --- Biomedical engineering. --- Medical physics. --- Radiation. --- Spectroscopy/Spectrometry. --- Spectroscopy and Microscopy. --- Biological Microscopy. --- Biomedical Engineering and Bioengineering. --- Medical and Radiation Physics. --- Physics --- Radiology --- Health physics --- Health radiation physics --- Medical radiation physics --- Radiotherapy physics --- Radiation therapy physics --- Biophysics --- Clinical engineering --- Medical engineering --- Bioengineering --- Engineering --- Medicine --- Analysis, Microscopic --- Light microscopy --- Micrographic analysis --- Microscope and microscopy --- Microscopic analysis --- Optical microscopy --- Optics --- Analysis, Spectrum --- Spectra --- Spectrochemical analysis --- Spectrochemistry --- Spectrometry --- Spectroscopy --- Chemistry, Analytic --- Interferometry --- Radiation --- Wave-motion, Theory of --- Absorption spectra --- Light --- Spectroscope --- Qualitative --- Analytical chemistry --- X-ray spectroscopy. --- Synchrotron radiation. --- Bremsstrahlung, Magnetic --- Emission, Synchrotron --- Magnetic bremsstrahlung --- Synchrotron emission --- Electromagnetic waves --- Particles (Nuclear physics) --- Emission spectroscopy, X-ray --- Energy dispersive x-ray spectroscopy --- Excitation analysis, Fluorescent --- Fluorescence analysis, X-ray --- Fluorescent excitation analysis --- Fluorescent x-ray spectroscopy --- X-ray emission spectroscopy --- X-ray fluorescence analysis --- XES (X-ray emission spectroscopy) --- Spectrum analysis
Choose an application
This book is a printed edition of the Special Issue of Crystals entitled Pressure-Induced Phase Transformations. It includes selected articles on the behavior of matter under high-pressure and high-temperature conditions, describing and discussing contemporary achievements, which were selected based on their relevance and scientific quality.
Research & information: general --- vanadate --- zircon --- high pressure --- band gap --- phase transition --- optical absorption --- benzene phase I --- homogeneous melting --- Ostwald’s step rule --- molecular dynamics simulation --- metastable phase --- melting transition --- Fe --- electrical resistivity --- thermal conductivity --- heat flow --- thermal and chemical convection --- sesquioxides --- phase transitions --- Laue diffraction --- mechanisms of phase transitions --- reactivity --- tungsten --- rhenium --- carbon dioxide --- carbonates --- high-pressure high-temperature experiments --- quantum spin liquids --- frustrated magnets --- quantum phase transitions --- high-pressure measurements --- phase diagram --- quantum molecular dynamics --- melting curve --- Z methodology --- multi-phase materials --- epsomite --- dehydration reaction --- Raman spectra --- electrical conductivity --- high-pressure phase transitions --- molecular crystals --- computational methods --- DFT and Force Field methods --- energy calculations --- intermolecular interactions --- Landau theory --- nonlinear elasticity theory --- perovskites --- fullerenes --- polymerization --- pressure-induced --- Raman --- infrared laser --- laser-heated diamond anvil cell --- synchrotron radiation --- extreme conditions --- n/a
Choose an application
This book is a printed edition of the Special Issue of Crystals entitled Pressure-Induced Phase Transformations. It includes selected articles on the behavior of matter under high-pressure and high-temperature conditions, describing and discussing contemporary achievements, which were selected based on their relevance and scientific quality.
vanadate --- zircon --- high pressure --- band gap --- phase transition --- optical absorption --- benzene phase I --- homogeneous melting --- Ostwald’s step rule --- molecular dynamics simulation --- metastable phase --- melting transition --- Fe --- electrical resistivity --- thermal conductivity --- heat flow --- thermal and chemical convection --- sesquioxides --- phase transitions --- Laue diffraction --- mechanisms of phase transitions --- reactivity --- tungsten --- rhenium --- carbon dioxide --- carbonates --- high-pressure high-temperature experiments --- quantum spin liquids --- frustrated magnets --- quantum phase transitions --- high-pressure measurements --- phase diagram --- quantum molecular dynamics --- melting curve --- Z methodology --- multi-phase materials --- epsomite --- dehydration reaction --- Raman spectra --- electrical conductivity --- high-pressure phase transitions --- molecular crystals --- computational methods --- DFT and Force Field methods --- energy calculations --- intermolecular interactions --- Landau theory --- nonlinear elasticity theory --- perovskites --- fullerenes --- polymerization --- pressure-induced --- Raman --- infrared laser --- laser-heated diamond anvil cell --- synchrotron radiation --- extreme conditions --- n/a
Listing 1 - 10 of 10 |
Sort by
|