Listing 1 - 4 of 4 |
Sort by
|
Choose an application
The Atlas of Retinal Diseases in Nigerians is an attempt to document common retinal diseases seen by the author over the past 20 years. The book is intended to be a quick reference guide for ophthalmologist-in-training and to offer brief management modalities based on evidence in the literature. Some major landmark retinal studies are summarized to help in decision-making based on scientific evidence. A section on the use of mobile phones for taking retinal pictures is included to aid patient education and telemedicine. Finally, retinal studies by the author carried out on Nigerians is summarized at the end of the book.
Choose an application
"Optical Coherence Tomography (OCT) plays a vital role in pediatric retina diagnosis, often revealing unrecognized retinal disorders and connections to brain injury, disease, and delayed neurodevelopment. Handbook of Pediatric Retinal OCT and the Eye-Brain Connection provides authoritative, up-to-date guidance in this promising area, showing how to optimize imaging in young children and infants, how to accurately interpret these images, and how to identify links between these images and brain and developmental disorders."--
Pediatric ophthalmology. --- Ophthalmology --- Retina --- Retinal Diseases --- Child. --- Infant. --- Eye Manifestations. --- Diseases --- Diagnosis. --- diagnostic imaging. --- diagnosis. --- Eye Manifestation --- Manifestation, Eye --- Manifestations, Eye --- Eye --- Eye Diseases --- Infants --- Children --- Minors --- Posterior segment (Eye)
Choose an application
Following the implementation of next-generation sequencing technologies (e.g., exome and genome sequencing) in molecular diagnostics, the majority of genetic defects underlying inherited retinal disease (IRD) can readily be identified. In parallel, opportunities to counteract the molecular consequences of these defects are rapidly emerging, providing hope for personalized medicine. ‘Classical’ gene augmentation therapy has been under study for several genetic subtypes of IRD and can be considered a safe and sometimes effective therapeutic strategy. The recent market approval of the first retinal gene augmentation therapy product (LuxturnaTM, for individuals with bi-allelic RPE65 mutations) by the FDA has not only demonstrated the potential of this specific approach, but also opened avenues for the development of other strategies. However, every gene—or even every mutation—may need a tailor-made therapeutic approach, in order to obtain the most efficacious strategy with minimal risks associated. In addition to gene augmentation therapy, other subtypes of molecular therapy are currently being designed and/or implemented, including splice modulation, DNA or RNA editing, optogenetics and pharmacological modulation. In addition, the development of proper delivery vectors has gained strong attention, and should not be overlooked when designing and testing a novel therapeutic approach. In this Special Issue, we aim to describe the current state of the art of molecular therapeutics for IRD, and discuss existing and novel therapeutic strategies, from idea to implementation, and from bench to bedside.
Research & information: general --- Biology, life sciences --- induced pluripotent stem cell (iPSC) --- clustered regularly interspaced short palindromic repeats (CRISPR) --- homology-directed repair (HDR) --- Enhanced S-Cone Syndrome (ESCS) --- NR2E3 --- AAV --- retina --- gene therapy --- dual AAV --- gold nanoparticles --- DNA-wrapped gold nanoparticles --- ARPE-19 cells --- retinal pigment epithelium --- clathrin-coated vesicles --- endosomal trafficking --- retinitis pigmentosa --- autosomal dominant --- G56R --- putative dominant negative effect --- gapmer antisense oligonucleotides --- allele-specific knockdown --- Leber congenital amaurosis and allied retinal ciliopathies --- CEP290 --- Flanders founder c.4723A > --- T nonsense mutation --- Cilia elongation --- spontaneous nonsense correction --- AON-mediated exon skipping --- microRNA --- photoreceptors --- rods --- cones --- bipolar cells --- Müller glia --- retinal inherited disorders --- retinal degeneration --- antisense oligonucleotides --- Stargardt disease --- inherited retinal diseases --- splicing modulation --- RNA therapy --- ABCA4 --- iPSC-derived photoreceptor precursor cells --- cyclic GMP --- apoptosis --- necrosis --- drug delivery systems --- translational medicine --- Usher syndrome --- Leber congenital amaurosis --- RPE65 --- nonprofit --- patient registry --- translational --- protein trafficking --- protein folding --- protein degradation --- chaperones --- chaperonins --- heat shock response --- unfolded protein response --- autophagy --- therapy --- IRD --- DNA therapies --- RNA therapies --- compound therapies --- clinical trials --- Retinitis Pigmentosa GTPase Regulator --- adeno-associated viral --- Retinitis Pigmentosa (RP) --- choroideremia --- REP1 --- inherited retinal disease --- treatment --- apical polarity --- crumbs complex --- fetal retina --- PAR complex --- retinal organoids --- retinogenesis --- gene augmentation --- adeno-associated virus (AAV) --- induced pluripotent stem cell (iPSC) --- clustered regularly interspaced short palindromic repeats (CRISPR) --- homology-directed repair (HDR) --- Enhanced S-Cone Syndrome (ESCS) --- NR2E3 --- AAV --- retina --- gene therapy --- dual AAV --- gold nanoparticles --- DNA-wrapped gold nanoparticles --- ARPE-19 cells --- retinal pigment epithelium --- clathrin-coated vesicles --- endosomal trafficking --- retinitis pigmentosa --- autosomal dominant --- G56R --- putative dominant negative effect --- gapmer antisense oligonucleotides --- allele-specific knockdown --- Leber congenital amaurosis and allied retinal ciliopathies --- CEP290 --- Flanders founder c.4723A > --- T nonsense mutation --- Cilia elongation --- spontaneous nonsense correction --- AON-mediated exon skipping --- microRNA --- photoreceptors --- rods --- cones --- bipolar cells --- Müller glia --- retinal inherited disorders --- retinal degeneration --- antisense oligonucleotides --- Stargardt disease --- inherited retinal diseases --- splicing modulation --- RNA therapy --- ABCA4 --- iPSC-derived photoreceptor precursor cells --- cyclic GMP --- apoptosis --- necrosis --- drug delivery systems --- translational medicine --- Usher syndrome --- Leber congenital amaurosis --- RPE65 --- nonprofit --- patient registry --- translational --- protein trafficking --- protein folding --- protein degradation --- chaperones --- chaperonins --- heat shock response --- unfolded protein response --- autophagy --- therapy --- IRD --- DNA therapies --- RNA therapies --- compound therapies --- clinical trials --- Retinitis Pigmentosa GTPase Regulator --- adeno-associated viral --- Retinitis Pigmentosa (RP) --- choroideremia --- REP1 --- inherited retinal disease --- treatment --- apical polarity --- crumbs complex --- fetal retina --- PAR complex --- retinal organoids --- retinogenesis --- gene augmentation --- adeno-associated virus (AAV)
Choose an application
Following the implementation of next-generation sequencing technologies (e.g., exome and genome sequencing) in molecular diagnostics, the majority of genetic defects underlying inherited retinal disease (IRD) can readily be identified. In parallel, opportunities to counteract the molecular consequences of these defects are rapidly emerging, providing hope for personalized medicine. ‘Classical’ gene augmentation therapy has been under study for several genetic subtypes of IRD and can be considered a safe and sometimes effective therapeutic strategy. The recent market approval of the first retinal gene augmentation therapy product (LuxturnaTM, for individuals with bi-allelic RPE65 mutations) by the FDA has not only demonstrated the potential of this specific approach, but also opened avenues for the development of other strategies. However, every gene—or even every mutation—may need a tailor-made therapeutic approach, in order to obtain the most efficacious strategy with minimal risks associated. In addition to gene augmentation therapy, other subtypes of molecular therapy are currently being designed and/or implemented, including splice modulation, DNA or RNA editing, optogenetics and pharmacological modulation. In addition, the development of proper delivery vectors has gained strong attention, and should not be overlooked when designing and testing a novel therapeutic approach. In this Special Issue, we aim to describe the current state of the art of molecular therapeutics for IRD, and discuss existing and novel therapeutic strategies, from idea to implementation, and from bench to bedside.
induced pluripotent stem cell (iPSC) --- clustered regularly interspaced short palindromic repeats (CRISPR) --- homology-directed repair (HDR) --- Enhanced S-Cone Syndrome (ESCS) --- NR2E3 --- AAV --- retina --- gene therapy --- dual AAV --- gold nanoparticles --- DNA-wrapped gold nanoparticles --- ARPE-19 cells --- retinal pigment epithelium --- clathrin-coated vesicles --- endosomal trafficking --- retinitis pigmentosa --- autosomal dominant --- G56R --- putative dominant negative effect --- gapmer antisense oligonucleotides --- allele-specific knockdown --- Leber congenital amaurosis and allied retinal ciliopathies --- CEP290 --- Flanders founder c.4723A > --- T nonsense mutation --- Cilia elongation --- spontaneous nonsense correction --- AON-mediated exon skipping --- microRNA --- photoreceptors --- rods --- cones --- bipolar cells --- Müller glia --- retinal inherited disorders --- retinal degeneration --- antisense oligonucleotides --- Stargardt disease --- inherited retinal diseases --- splicing modulation --- RNA therapy --- ABCA4 --- iPSC-derived photoreceptor precursor cells --- cyclic GMP --- apoptosis --- necrosis --- drug delivery systems --- translational medicine --- Usher syndrome --- Leber congenital amaurosis --- RPE65 --- nonprofit --- patient registry --- translational --- protein trafficking --- protein folding --- protein degradation --- chaperones --- chaperonins --- heat shock response --- unfolded protein response --- autophagy --- therapy --- IRD --- DNA therapies --- RNA therapies --- compound therapies --- clinical trials --- Retinitis Pigmentosa GTPase Regulator --- adeno-associated viral --- Retinitis Pigmentosa (RP) --- choroideremia --- REP1 --- inherited retinal disease --- treatment --- apical polarity --- crumbs complex --- fetal retina --- PAR complex --- retinal organoids --- retinogenesis --- gene augmentation --- adeno-associated virus (AAV) --- n/a --- Müller glia
Listing 1 - 4 of 4 |
Sort by
|