Narrow your search

Library

ULiège (2)

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

VIVES (1)

Vlaams Parlement (1)


Resource type

book (3)


Language

English (3)


Year
From To Submit

2020 (3)

Listing 1 - 3 of 3
Sort by

Book
The molecular switch : signaling and allostery
Authors: ---
ISBN: 0691200254 Year: 2020 Publisher: Princeton, New Jersey ; Oxford : Oxford Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

A signature feature of living organisms is their ability to carry out purposeful actions by taking stock of the world around them. To that end, cells have an arsenal of signaling molecules linked together in signaling pathways, which switch between inactive and active conformations. The Molecular Switch articulates a biophysical perspective on signaling, showing how allostery—a powerful explanation of how molecules function across all biological domains—can be reformulated using equilibrium statistical mechanics, applied to diverse biological systems exhibiting switching behaviors, and successfully unify seemingly unrelated phenomena.Rob Phillips weaves together allostery and statistical mechanics via a series of biological vignettes, each of which showcases an important biological question and accompanying physical analysis. Beginning with the study of ligand-gated ion channels and their role in problems ranging from muscle action to vision, Phillips then undertakes increasingly sophisticated case studies, from bacterial chemotaxis and quorum sensing to hemoglobin and its role in mammalian physiology. He looks at G-protein coupled receptors as well as the role of allosteric molecules in gene regulation. Phillips concludes by surveying problems in biological fidelity and offering a speculative chapter on the relationship between allostery and biological Maxwell demons.Appropriate for graduate students and researchers in biophysics, physics, engineering, biology, and neuroscience, The Molecular Switch presents a unified, quantitative model for describing biological signaling phenomena.


Book
Opioids and Their Receptors : Present and Emerging Concepts in Opioid Drug Discovery
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The interest in opioids such as morphine, the prototypical opioid ligand, has been maintained through the years. The identification of endogenous opioids and their receptors (mu, delta, kappa, and nociceptin), molecular cloning, and the elucidation of the crystal structures of opioid receptors represent key milestones in opioid research. The opioid system modulates numerous pharmacological responses, with therapeutic (i.e., analgesia) and detrimental side effects (i.e., addiction). The medical use and misuse of opioids have dramatically increased, leading to the 21st century opioid crisis. This book presents recent developments in opioid drug discovery, specifically in the medicinal chemistry and pharmacology of new ligands targeting the opioid receptors as effective and safe therapeutics for human diseases. Furthermore, it draws a special attention to advancing concepts and strategies in opioid drug discovery to mitigate opioid liabilities. The diversity among the discussed topics is a testimony to the complexity of the opioid system, which results from the expression, regulation, and functional role of ligands and receptors. The array of multidisciplinary research areas illustrates the rapidly developing basic research and translational activities in opioid drug discovery. This book will serve as a useful reference while also stimulating continued research in the chemistry and pharmacology of opioids and their receptors, with the prospect of developing improved therapies for human diseases, but also improving health and quality of life in general.

Keywords

opioid receptors --- neurokinin-1 receptor --- peptide synthesis --- receptor binding studies --- functional assay --- writhing test --- tolerance --- Leu-enkephalin --- beta-arrestin --- mu opioid receptor --- delta opioid receptor --- biased signaling --- DADLE --- ischemia --- plasma stability --- morphinan --- BNTX --- δ opioid receptor antagonist --- 1H-NMR experiments --- mechanism elucidation --- peripheral antinociception --- 14-methoxycodeine-6-O-sulfate --- codeine-6-O-sulfate --- opioid peptides and peptidomimetics --- DAMGO --- DALDA --- [Dmt1]DALDA --- KGOP01 --- binding --- molecular docking --- structure-activity relationships --- β2-amino acids --- β2-Homo-amino acids --- µ-opioid receptor --- opioid peptides --- TAPP --- racemic synthesis of β2-amino acids --- peripheral µ-opioid receptors --- analgesia --- peripheral analgesic tolerance --- dysbiosis --- opioid --- bifunctional ligands --- (−)-N-phenethylnorhydromorphone analogs --- [35S]GTPgammaS assay --- forskolin-induced cAMP accumulation assays --- β-arrestin recruitment assays --- MOR and DOR agonists --- respiratory depression --- bias factor --- molecular modeling &amp --- simulation --- δ opioid receptor --- NTI derivative --- sulfonamide --- inverse agonist --- neutral antagonist --- agonist --- opioids --- mu receptor --- opioid side effects --- biased agonism --- partial agonism --- zerumbone --- chronic constriction injury (CCI) --- allodynia --- hyperalgesia --- potassium channels --- over-the-counter drugs --- misuse --- abuse --- opioid drugs --- pharmacology --- codeine --- dihydrocodeine --- loperamide --- opioid peptide --- macrocyclic tetrapeptide --- multifunctional ligands --- kappa opioid receptor --- analgesics --- opioid liabilities --- μ opioid receptor --- receptor model --- biased ligands --- dependence --- pain therapy --- neonatal opioid withdrawal syndrome --- naltrexone --- 6β-naltrexol --- buprenorphine --- G-protein bias --- arrestin recruitment --- respiration --- mitragynine --- heteromer --- internalization --- primary hippocampal culture --- lysosomes --- µ opioid receptor --- molecular dynamics --- docking --- interaction fingerprints --- biased agonists --- SR-17018 --- PZM21 --- morphine --- fentanyl --- diphenethylamines --- design and synthesis --- structure–activity relationships --- partial agonist --- biased agonist --- antagonist --- binding affinity --- selectivity --- n/a


Book
Opioids and Their Receptors : Present and Emerging Concepts in Opioid Drug Discovery
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The interest in opioids such as morphine, the prototypical opioid ligand, has been maintained through the years. The identification of endogenous opioids and their receptors (mu, delta, kappa, and nociceptin), molecular cloning, and the elucidation of the crystal structures of opioid receptors represent key milestones in opioid research. The opioid system modulates numerous pharmacological responses, with therapeutic (i.e., analgesia) and detrimental side effects (i.e., addiction). The medical use and misuse of opioids have dramatically increased, leading to the 21st century opioid crisis. This book presents recent developments in opioid drug discovery, specifically in the medicinal chemistry and pharmacology of new ligands targeting the opioid receptors as effective and safe therapeutics for human diseases. Furthermore, it draws a special attention to advancing concepts and strategies in opioid drug discovery to mitigate opioid liabilities. The diversity among the discussed topics is a testimony to the complexity of the opioid system, which results from the expression, regulation, and functional role of ligands and receptors. The array of multidisciplinary research areas illustrates the rapidly developing basic research and translational activities in opioid drug discovery. This book will serve as a useful reference while also stimulating continued research in the chemistry and pharmacology of opioids and their receptors, with the prospect of developing improved therapies for human diseases, but also improving health and quality of life in general.

Keywords

Medicine --- opioid receptors --- neurokinin-1 receptor --- peptide synthesis --- receptor binding studies --- functional assay --- writhing test --- tolerance --- Leu-enkephalin --- beta-arrestin --- mu opioid receptor --- delta opioid receptor --- biased signaling --- DADLE --- ischemia --- plasma stability --- morphinan --- BNTX --- δ opioid receptor antagonist --- 1H-NMR experiments --- mechanism elucidation --- peripheral antinociception --- 14-methoxycodeine-6-O-sulfate --- codeine-6-O-sulfate --- opioid peptides and peptidomimetics --- DAMGO --- DALDA --- [Dmt1]DALDA --- KGOP01 --- binding --- molecular docking --- structure-activity relationships --- β2-amino acids --- β2-Homo-amino acids --- µ-opioid receptor --- opioid peptides --- TAPP --- racemic synthesis of β2-amino acids --- peripheral µ-opioid receptors --- analgesia --- peripheral analgesic tolerance --- dysbiosis --- opioid --- bifunctional ligands --- (−)-N-phenethylnorhydromorphone analogs --- [35S]GTPgammaS assay --- forskolin-induced cAMP accumulation assays --- β-arrestin recruitment assays --- MOR and DOR agonists --- respiratory depression --- bias factor --- molecular modeling &amp --- simulation --- δ opioid receptor --- NTI derivative --- sulfonamide --- inverse agonist --- neutral antagonist --- agonist --- opioids --- mu receptor --- opioid side effects --- biased agonism --- partial agonism --- zerumbone --- chronic constriction injury (CCI) --- allodynia --- hyperalgesia --- potassium channels --- over-the-counter drugs --- misuse --- abuse --- opioid drugs --- pharmacology --- codeine --- dihydrocodeine --- loperamide --- opioid peptide --- macrocyclic tetrapeptide --- multifunctional ligands --- kappa opioid receptor --- analgesics --- opioid liabilities --- μ opioid receptor --- receptor model --- biased ligands --- dependence --- pain therapy --- neonatal opioid withdrawal syndrome --- naltrexone --- 6β-naltrexol --- buprenorphine --- G-protein bias --- arrestin recruitment --- respiration --- mitragynine --- heteromer --- internalization --- primary hippocampal culture --- lysosomes --- µ opioid receptor --- molecular dynamics --- docking --- interaction fingerprints --- biased agonists --- SR-17018 --- PZM21 --- morphine --- fentanyl --- diphenethylamines --- design and synthesis --- structure-activity relationships --- partial agonist --- biased agonist --- antagonist --- binding affinity --- selectivity --- opioid receptors --- neurokinin-1 receptor --- peptide synthesis --- receptor binding studies --- functional assay --- writhing test --- tolerance --- Leu-enkephalin --- beta-arrestin --- mu opioid receptor --- delta opioid receptor --- biased signaling --- DADLE --- ischemia --- plasma stability --- morphinan --- BNTX --- δ opioid receptor antagonist --- 1H-NMR experiments --- mechanism elucidation --- peripheral antinociception --- 14-methoxycodeine-6-O-sulfate --- codeine-6-O-sulfate --- opioid peptides and peptidomimetics --- DAMGO --- DALDA --- [Dmt1]DALDA --- KGOP01 --- binding --- molecular docking --- structure-activity relationships --- β2-amino acids --- β2-Homo-amino acids --- µ-opioid receptor --- opioid peptides --- TAPP --- racemic synthesis of β2-amino acids --- peripheral µ-opioid receptors --- analgesia --- peripheral analgesic tolerance --- dysbiosis --- opioid --- bifunctional ligands --- (−)-N-phenethylnorhydromorphone analogs --- [35S]GTPgammaS assay --- forskolin-induced cAMP accumulation assays --- β-arrestin recruitment assays --- MOR and DOR agonists --- respiratory depression --- bias factor --- molecular modeling &amp --- simulation --- δ opioid receptor --- NTI derivative --- sulfonamide --- inverse agonist --- neutral antagonist --- agonist --- opioids --- mu receptor --- opioid side effects --- biased agonism --- partial agonism --- zerumbone --- chronic constriction injury (CCI) --- allodynia --- hyperalgesia --- potassium channels --- over-the-counter drugs --- misuse --- abuse --- opioid drugs --- pharmacology --- codeine --- dihydrocodeine --- loperamide --- opioid peptide --- macrocyclic tetrapeptide --- multifunctional ligands --- kappa opioid receptor --- analgesics --- opioid liabilities --- μ opioid receptor --- receptor model --- biased ligands --- dependence --- pain therapy --- neonatal opioid withdrawal syndrome --- naltrexone --- 6β-naltrexol --- buprenorphine --- G-protein bias --- arrestin recruitment --- respiration --- mitragynine --- heteromer --- internalization --- primary hippocampal culture --- lysosomes --- µ opioid receptor --- molecular dynamics --- docking --- interaction fingerprints --- biased agonists --- SR-17018 --- PZM21 --- morphine --- fentanyl --- diphenethylamines --- design and synthesis --- structure-activity relationships --- partial agonist --- biased agonist --- antagonist --- binding affinity --- selectivity

Listing 1 - 3 of 3
Sort by