Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2020 (6)

Listing 1 - 6 of 6
Sort by

Book
Advances in Thermal Spray Technology
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Thermal spray technology has been widely adopted industrially to combat diverse forms of surface degradation caused by wear, corrosion, oxidation, high thermal load, etc. Nonetheless, improvements in coating quality are incessantly sought to further enhance durability and/or performance of components operating in increasingly aggressive environments. This has led to technology advancements on various fronts, spanning feedstock materials, process variants, torch designs, coating architectures, etc. These have also been complemented by developments in closely allied areas to accommodate novel substrate materials, explore post-treatments, investigate coating behaviour under varied harsh conditions and harness benefits of artificial intelligence/neural networking. All of the above, along with efforts to improve diagnostic tools and create reliable control systems, have been driven by the desire to achieve robust shop-floor thermal spray capabilities to consolidate existing applications and spur new ones. This book is a compilation of twelve exciting contributions made for the Special Issue on “Advances in Thermal Spray Technology”, and showcases some of the above developments that are currently attracting interest in the field.


Book
Advances in Thermal Spray Technology
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Thermal spray technology has been widely adopted industrially to combat diverse forms of surface degradation caused by wear, corrosion, oxidation, high thermal load, etc. Nonetheless, improvements in coating quality are incessantly sought to further enhance durability and/or performance of components operating in increasingly aggressive environments. This has led to technology advancements on various fronts, spanning feedstock materials, process variants, torch designs, coating architectures, etc. These have also been complemented by developments in closely allied areas to accommodate novel substrate materials, explore post-treatments, investigate coating behaviour under varied harsh conditions and harness benefits of artificial intelligence/neural networking. All of the above, along with efforts to improve diagnostic tools and create reliable control systems, have been driven by the desire to achieve robust shop-floor thermal spray capabilities to consolidate existing applications and spur new ones. This book is a compilation of twelve exciting contributions made for the Special Issue on “Advances in Thermal Spray Technology”, and showcases some of the above developments that are currently attracting interest in the field.


Book
Advances in Thermal Spray Technology
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Thermal spray technology has been widely adopted industrially to combat diverse forms of surface degradation caused by wear, corrosion, oxidation, high thermal load, etc. Nonetheless, improvements in coating quality are incessantly sought to further enhance durability and/or performance of components operating in increasingly aggressive environments. This has led to technology advancements on various fronts, spanning feedstock materials, process variants, torch designs, coating architectures, etc. These have also been complemented by developments in closely allied areas to accommodate novel substrate materials, explore post-treatments, investigate coating behaviour under varied harsh conditions and harness benefits of artificial intelligence/neural networking. All of the above, along with efforts to improve diagnostic tools and create reliable control systems, have been driven by the desire to achieve robust shop-floor thermal spray capabilities to consolidate existing applications and spur new ones. This book is a compilation of twelve exciting contributions made for the Special Issue on “Advances in Thermal Spray Technology”, and showcases some of the above developments that are currently attracting interest in the field.

Keywords

History of engineering & technology --- carbon/carbon (C/C) composites --- ultra-high temperature ceramic (UHTC) --- vacuum plasma spray (VPS) --- ablation resistance --- thermal spraying --- high velocity oxy-fuel (HVOF) --- S-phase --- expanded austenite --- 316L --- stainless steel --- thermochemical treatment --- hardening --- gas nitriding --- axial feeding --- hybrid plasma spray coating --- bovine serum solution --- sliding wear --- indentation --- double-layered TBC --- gadolinium zirconate --- suspension plasma spray --- thermal cyclic fatigue --- burner rig test --- yttria stabilized zirconia --- titanium carbide --- chromium carbide --- wear --- cold spray --- neural network --- additive manufacturing --- model --- spray angle --- profile --- amorphous --- nanocrystalline --- wear resistant --- Vickers microhardness --- plasma spraying --- high-velocity suspension flame spraying --- copper --- silver --- NiCr 80/20 --- metal coatings --- polymer coatings --- flame spraying --- icephobicity --- ice adhesion --- wettability --- coating design --- corrosion-wear performance --- dense structure --- corrosion potential --- corrosion rate --- worn surface --- HVOF --- hardmetal --- dynamic impact test --- impact wear --- Al2O3-TiO2 system --- APS --- suspension spraying --- microstructure --- morphology --- phase composition --- carbon/carbon (C/C) composites --- ultra-high temperature ceramic (UHTC) --- vacuum plasma spray (VPS) --- ablation resistance --- thermal spraying --- high velocity oxy-fuel (HVOF) --- S-phase --- expanded austenite --- 316L --- stainless steel --- thermochemical treatment --- hardening --- gas nitriding --- axial feeding --- hybrid plasma spray coating --- bovine serum solution --- sliding wear --- indentation --- double-layered TBC --- gadolinium zirconate --- suspension plasma spray --- thermal cyclic fatigue --- burner rig test --- yttria stabilized zirconia --- titanium carbide --- chromium carbide --- wear --- cold spray --- neural network --- additive manufacturing --- model --- spray angle --- profile --- amorphous --- nanocrystalline --- wear resistant --- Vickers microhardness --- plasma spraying --- high-velocity suspension flame spraying --- copper --- silver --- NiCr 80/20 --- metal coatings --- polymer coatings --- flame spraying --- icephobicity --- ice adhesion --- wettability --- coating design --- corrosion-wear performance --- dense structure --- corrosion potential --- corrosion rate --- worn surface --- HVOF --- hardmetal --- dynamic impact test --- impact wear --- Al2O3-TiO2 system --- APS --- suspension spraying --- microstructure --- morphology --- phase composition


Book
Ti-Based Biomaterials : Synthesis, Properties and Applications
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recently, great attention has been paid to materials that can be used in the human body to prepare parts that replace failed bone structures. Of all materials, Ti-based materials are the most desirable, because they provide an optimum combination of mechanical, chemical, and biological properties. The successful application of Ti biomaterials has been confirmed mainly in dentistry, orthopedics, and traumatology. Titanium biocompatibility is practically the highest of all metallic biomaterials; however, new solutions are being sought to continuously improve their biocompatibility and osseointegration. Thus, the chemical modification of Ti results in the formation of new alloys or composites, which provide new perspectives for Ti biomaterials applications. This book covers broad aspects of Ti-based biomaterials concerning the design of their structure, mechanical, and biological properties. This book demonstrates that the new Ti-based compounds and their surface treatment provide the best properties for biomedical applications.

Keywords

History of engineering & technology --- Powder Bed Fusion --- Titanium alloys --- Cobalt–Chrome alloys --- anisotropy --- bcc Ti-Mo-Zr alloys --- Inter-diffusion coefficient --- Impurity coefficient --- Atomic mobility --- CALPHAD modeling --- titanium --- low frequency --- inductive transmission --- metallic housing --- hermetic sealing --- longevity --- FEM model --- active implantable medical devices --- stainless --- nitinol --- diaphyseal fracture --- implant --- osseointegration --- biocompatibility --- bioactive ceramic coatings --- sphene --- ECAP --- Conform --- continuous extrusion --- wire --- medical implants --- plasma spraying --- Ti coating --- polymers --- biomaterials --- heat treatment --- in situ alloying --- laser additive manufacturing --- mechanical properties --- microstructure --- Ti–Nb alloy --- Ni-Ti alloy --- surface characteristics --- hydrophobic --- magnetic mixed EDM --- TiO2 nanotubes --- crystallization --- gaseous plasma --- biological response --- mechanical alloying --- nanoprecursor --- electric pulse-assisted sintering --- metal matrix composites --- titanium plate --- amine plasma --- surface modification --- hydrophilicity --- new bone formation --- titanium-based foams --- thermal dealloying --- titanium alloy --- biomaterial --- TiMoZrTa --- TiMoSi --- low elasticity modulus --- corrosion --- titanium alloys --- microstructures --- TNTZ --- copper --- Ti2Cu --- Ti3Cu --- antibacterial --- shape memory alloy --- temperature variable micro-compression test --- single crystal --- biomedical alloy --- selective electron beam additive manufacture --- Ti6Al4V ELI alloy --- phase transformation --- spatial --- gradient energy density --- martensitic decomposition --- Ti3Al intermetallic compound --- fracture analysis --- biofunctionalization --- Powder Bed Fusion --- Titanium alloys --- Cobalt–Chrome alloys --- anisotropy --- bcc Ti-Mo-Zr alloys --- Inter-diffusion coefficient --- Impurity coefficient --- Atomic mobility --- CALPHAD modeling --- titanium --- low frequency --- inductive transmission --- metallic housing --- hermetic sealing --- longevity --- FEM model --- active implantable medical devices --- stainless --- nitinol --- diaphyseal fracture --- implant --- osseointegration --- biocompatibility --- bioactive ceramic coatings --- sphene --- ECAP --- Conform --- continuous extrusion --- wire --- medical implants --- plasma spraying --- Ti coating --- polymers --- biomaterials --- heat treatment --- in situ alloying --- laser additive manufacturing --- mechanical properties --- microstructure --- Ti–Nb alloy --- Ni-Ti alloy --- surface characteristics --- hydrophobic --- magnetic mixed EDM --- TiO2 nanotubes --- crystallization --- gaseous plasma --- biological response --- mechanical alloying --- nanoprecursor --- electric pulse-assisted sintering --- metal matrix composites --- titanium plate --- amine plasma --- surface modification --- hydrophilicity --- new bone formation --- titanium-based foams --- thermal dealloying --- titanium alloy --- biomaterial --- TiMoZrTa --- TiMoSi --- low elasticity modulus --- corrosion --- titanium alloys --- microstructures --- TNTZ --- copper --- Ti2Cu --- Ti3Cu --- antibacterial --- shape memory alloy --- temperature variable micro-compression test --- single crystal --- biomedical alloy --- selective electron beam additive manufacture --- Ti6Al4V ELI alloy --- phase transformation --- spatial --- gradient energy density --- martensitic decomposition --- Ti3Al intermetallic compound --- fracture analysis --- biofunctionalization


Book
Ti-Based Biomaterials : Synthesis, Properties and Applications
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recently, great attention has been paid to materials that can be used in the human body to prepare parts that replace failed bone structures. Of all materials, Ti-based materials are the most desirable, because they provide an optimum combination of mechanical, chemical, and biological properties. The successful application of Ti biomaterials has been confirmed mainly in dentistry, orthopedics, and traumatology. Titanium biocompatibility is practically the highest of all metallic biomaterials; however, new solutions are being sought to continuously improve their biocompatibility and osseointegration. Thus, the chemical modification of Ti results in the formation of new alloys or composites, which provide new perspectives for Ti biomaterials applications. This book covers broad aspects of Ti-based biomaterials concerning the design of their structure, mechanical, and biological properties. This book demonstrates that the new Ti-based compounds and their surface treatment provide the best properties for biomedical applications.

Keywords

History of engineering & technology --- Powder Bed Fusion --- Titanium alloys --- Cobalt–Chrome alloys --- anisotropy --- bcc Ti-Mo-Zr alloys --- Inter-diffusion coefficient --- Impurity coefficient --- Atomic mobility --- CALPHAD modeling --- titanium --- low frequency --- inductive transmission --- metallic housing --- hermetic sealing --- longevity --- FEM model --- active implantable medical devices --- stainless --- nitinol --- diaphyseal fracture --- implant --- osseointegration --- biocompatibility --- bioactive ceramic coatings --- sphene --- ECAP --- Conform --- continuous extrusion --- wire --- medical implants --- plasma spraying --- Ti coating --- polymers --- biomaterials --- heat treatment --- in situ alloying --- laser additive manufacturing --- mechanical properties --- microstructure --- Ti–Nb alloy --- Ni-Ti alloy --- surface characteristics --- hydrophobic --- magnetic mixed EDM --- TiO2 nanotubes --- crystallization --- gaseous plasma --- biological response --- mechanical alloying --- nanoprecursor --- electric pulse-assisted sintering --- metal matrix composites --- titanium plate --- amine plasma --- surface modification --- hydrophilicity --- new bone formation --- titanium-based foams --- thermal dealloying --- titanium alloy --- biomaterial --- TiMoZrTa --- TiMoSi --- low elasticity modulus --- corrosion --- titanium alloys --- microstructures --- TNTZ --- copper --- Ti2Cu --- Ti3Cu --- antibacterial --- shape memory alloy --- temperature variable micro-compression test --- single crystal --- biomedical alloy --- selective electron beam additive manufacture --- Ti6Al4V ELI alloy --- phase transformation --- spatial --- gradient energy density --- martensitic decomposition --- Ti3Al intermetallic compound --- fracture analysis --- biofunctionalization


Book
Ti-Based Biomaterials : Synthesis, Properties and Applications
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recently, great attention has been paid to materials that can be used in the human body to prepare parts that replace failed bone structures. Of all materials, Ti-based materials are the most desirable, because they provide an optimum combination of mechanical, chemical, and biological properties. The successful application of Ti biomaterials has been confirmed mainly in dentistry, orthopedics, and traumatology. Titanium biocompatibility is practically the highest of all metallic biomaterials; however, new solutions are being sought to continuously improve their biocompatibility and osseointegration. Thus, the chemical modification of Ti results in the formation of new alloys or composites, which provide new perspectives for Ti biomaterials applications. This book covers broad aspects of Ti-based biomaterials concerning the design of their structure, mechanical, and biological properties. This book demonstrates that the new Ti-based compounds and their surface treatment provide the best properties for biomedical applications.

Keywords

Powder Bed Fusion --- Titanium alloys --- Cobalt–Chrome alloys --- anisotropy --- bcc Ti-Mo-Zr alloys --- Inter-diffusion coefficient --- Impurity coefficient --- Atomic mobility --- CALPHAD modeling --- titanium --- low frequency --- inductive transmission --- metallic housing --- hermetic sealing --- longevity --- FEM model --- active implantable medical devices --- stainless --- nitinol --- diaphyseal fracture --- implant --- osseointegration --- biocompatibility --- bioactive ceramic coatings --- sphene --- ECAP --- Conform --- continuous extrusion --- wire --- medical implants --- plasma spraying --- Ti coating --- polymers --- biomaterials --- heat treatment --- in situ alloying --- laser additive manufacturing --- mechanical properties --- microstructure --- Ti–Nb alloy --- Ni-Ti alloy --- surface characteristics --- hydrophobic --- magnetic mixed EDM --- TiO2 nanotubes --- crystallization --- gaseous plasma --- biological response --- mechanical alloying --- nanoprecursor --- electric pulse-assisted sintering --- metal matrix composites --- titanium plate --- amine plasma --- surface modification --- hydrophilicity --- new bone formation --- titanium-based foams --- thermal dealloying --- titanium alloy --- biomaterial --- TiMoZrTa --- TiMoSi --- low elasticity modulus --- corrosion --- titanium alloys --- microstructures --- TNTZ --- copper --- Ti2Cu --- Ti3Cu --- antibacterial --- shape memory alloy --- temperature variable micro-compression test --- single crystal --- biomedical alloy --- selective electron beam additive manufacture --- Ti6Al4V ELI alloy --- phase transformation --- spatial --- gradient energy density --- martensitic decomposition --- Ti3Al intermetallic compound --- fracture analysis --- biofunctionalization

Listing 1 - 6 of 6
Sort by