Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULiège (3)

VIVES (3)

Vlaams Parlement (3)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2020 (6)

Listing 1 - 6 of 6
Sort by

Book
Metabolomic Applications in Animal Science
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Metabolomics has been a useful method for various study fields. However, its application in animal science does not seem to be sufficient. Metabolomics will be useful for various studies in animal science: Animal genetics and breeding, animal physiology, animal nutrition, animal products (milk, meat, eggs, and their by-products) and their processing, livestock environment, animal biotechnology, animal behavior, and animal welfare. More application examples and protocols for animal science will promote more motivation to use metabolomics effectively in the study field. Therefore, in this Special Issue, we introduced some research and review articles for “Metabolomic Applications in Anmal Science”. The main methods used were mass spectrometry or nuclear magnetic resonance spectroscopy. Not only a non-targeted, but also a targeted, analysis of metabolites is shown. The topics include dietary and pharmacological interventions and protocols for metabolomic experiments.


Book
Metabolomic Applications in Animal Science
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Metabolomics has been a useful method for various study fields. However, its application in animal science does not seem to be sufficient. Metabolomics will be useful for various studies in animal science: Animal genetics and breeding, animal physiology, animal nutrition, animal products (milk, meat, eggs, and their by-products) and their processing, livestock environment, animal biotechnology, animal behavior, and animal welfare. More application examples and protocols for animal science will promote more motivation to use metabolomics effectively in the study field. Therefore, in this Special Issue, we introduced some research and review articles for “Metabolomic Applications in Anmal Science”. The main methods used were mass spectrometry or nuclear magnetic resonance spectroscopy. Not only a non-targeted, but also a targeted, analysis of metabolites is shown. The topics include dietary and pharmacological interventions and protocols for metabolomic experiments.

Keywords

Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- albumen --- breed --- chicken --- feed --- metabolome --- yolk --- arachidonic acid --- omega-3 fatty acids --- lipidomics --- mass spectrometry --- dietary fat --- fatty acid metabolism --- pork --- meat --- skeletal muscle --- fiber type --- cooking --- beef --- Wagyu --- Holstein --- captive giraffes --- urine --- metabolomics --- 1H-NMR --- NMR --- metabotype --- transition --- ketosis --- cattle --- chemometrics --- spectral correction --- authentication --- biomarker --- feeding --- meat quality traits --- metabolite --- postmortem aging --- processing --- chickens --- heat stress --- lipid peroxidation --- orotic acid --- feed efficiency --- biomarkers --- SNPs --- GWAS --- RFI --- pigs --- pathways --- metabolic profile --- transition period --- livestock --- methyl donor --- one-carbon metabolism --- negative energy balance --- pasture legumes --- phytoestrogens --- flavonoids --- coumestans --- polyphenols --- proanthocyanidins --- metabolic profiling --- biosynthesis --- linear model --- transcriptomics --- horse --- metabolomic --- metabolism --- exercise --- saliva --- anabolic practices --- testosterone --- plasma --- CE-TOFMS --- intramuscular fat --- meat quality --- porcine --- albumen --- breed --- chicken --- feed --- metabolome --- yolk --- arachidonic acid --- omega-3 fatty acids --- lipidomics --- mass spectrometry --- dietary fat --- fatty acid metabolism --- pork --- meat --- skeletal muscle --- fiber type --- cooking --- beef --- Wagyu --- Holstein --- captive giraffes --- urine --- metabolomics --- 1H-NMR --- NMR --- metabotype --- transition --- ketosis --- cattle --- chemometrics --- spectral correction --- authentication --- biomarker --- feeding --- meat quality traits --- metabolite --- postmortem aging --- processing --- chickens --- heat stress --- lipid peroxidation --- orotic acid --- feed efficiency --- biomarkers --- SNPs --- GWAS --- RFI --- pigs --- pathways --- metabolic profile --- transition period --- livestock --- methyl donor --- one-carbon metabolism --- negative energy balance --- pasture legumes --- phytoestrogens --- flavonoids --- coumestans --- polyphenols --- proanthocyanidins --- metabolic profiling --- biosynthesis --- linear model --- transcriptomics --- horse --- metabolomic --- metabolism --- exercise --- saliva --- anabolic practices --- testosterone --- plasma --- CE-TOFMS --- intramuscular fat --- meat quality --- porcine


Book
Nutrition and Cardiovascular Health
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

There is unequivocal experimental, epidemiological, and clinical evidence demonstrating a correlation between diet and increased risk of cardiovascular disease (CVD). While nutritionally-poor diets can have a significant negative impact on cardiovascular health, dietary interventions with specific nutrients and/or functional foods are considered cost-effective and efficient components of prevention strategies. It has been estimated that nutritional factors may be responsible for approximately 40% of all CVD. Indeed, in one of the seminal studies conducted on modifiable risk factors and heart health (the INTERHEART study), >90% of all myocardial infarctions were attributed to preventable environmental factors with nutrition identified as one of the important determinants of CVD. There is an increasing public interest in and scientific investigation into establishing dietary approaches that can be undertaken for the prevention and treatment of CVD. This Special Issue provides an insight into the influential role of nutrition and dietary habits on cardiovascular health and disease, as well as their mechanisms of therapeutic and preventive action.

Keywords

Research & information: general --- Biology, life sciences --- Food & society --- magnesium deficiency --- arterial hypertension --- vascular tone --- arterial stiffness --- vascular remodeling --- insulin resistance --- magnesium supplementation --- dietary magnesium intake --- Zeb2 --- cardiac fibroblast --- activated myofibroblast --- cardiac fibrosis --- fibroblast contractility --- fish oil --- omega-3 fatty acids --- eicosapentaenoic acid (EPA) --- docosahexaenoic acid (DHA) --- cardiovascular disease --- irisin --- pediatric --- children --- nutrition --- diet --- body composition --- metabolic syndrome --- obesity, neonates --- Mediterranean diet --- inflammation --- nutrients --- polyphenols --- MUFA --- PUFA --- bioactive compounds --- phytosterols --- dietary pattern --- Aronia melanocarpa --- standardized extract --- dietary strategies --- supplementation --- cocaine --- cardiovascular health --- heart disease --- acute effects --- chronic effects --- marinobufagenin --- ouabain --- salt --- hypertension --- fibrosis --- Panax quinquefolius --- ginseng berry --- myocardial infarction --- phenolic compounds --- vascular aging --- vascular calcification --- arteriosclerosis --- Klotho --- chronic kidney disease (CKD), cancer --- diabetes --- heart failure --- micronutrients --- iron --- vitamins --- trace elements --- vitamin D --- seasonal variation --- lifestyle --- cytokines --- lipids --- mechanisms --- immunoregulatory --- eicosapentaenoic acid --- docosahexaenoic acid --- omega-3 polyunsaturated fatty acids --- coronary heart disease --- stretching --- TGF-β1 --- n/a


Book
Nutrition and Cardiovascular Health
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

There is unequivocal experimental, epidemiological, and clinical evidence demonstrating a correlation between diet and increased risk of cardiovascular disease (CVD). While nutritionally-poor diets can have a significant negative impact on cardiovascular health, dietary interventions with specific nutrients and/or functional foods are considered cost-effective and efficient components of prevention strategies. It has been estimated that nutritional factors may be responsible for approximately 40% of all CVD. Indeed, in one of the seminal studies conducted on modifiable risk factors and heart health (the INTERHEART study), >90% of all myocardial infarctions were attributed to preventable environmental factors with nutrition identified as one of the important determinants of CVD. There is an increasing public interest in and scientific investigation into establishing dietary approaches that can be undertaken for the prevention and treatment of CVD. This Special Issue provides an insight into the influential role of nutrition and dietary habits on cardiovascular health and disease, as well as their mechanisms of therapeutic and preventive action.

Keywords

magnesium deficiency --- arterial hypertension --- vascular tone --- arterial stiffness --- vascular remodeling --- insulin resistance --- magnesium supplementation --- dietary magnesium intake --- Zeb2 --- cardiac fibroblast --- activated myofibroblast --- cardiac fibrosis --- fibroblast contractility --- fish oil --- omega-3 fatty acids --- eicosapentaenoic acid (EPA) --- docosahexaenoic acid (DHA) --- cardiovascular disease --- irisin --- pediatric --- children --- nutrition --- diet --- body composition --- metabolic syndrome --- obesity, neonates --- Mediterranean diet --- inflammation --- nutrients --- polyphenols --- MUFA --- PUFA --- bioactive compounds --- phytosterols --- dietary pattern --- Aronia melanocarpa --- standardized extract --- dietary strategies --- supplementation --- cocaine --- cardiovascular health --- heart disease --- acute effects --- chronic effects --- marinobufagenin --- ouabain --- salt --- hypertension --- fibrosis --- Panax quinquefolius --- ginseng berry --- myocardial infarction --- phenolic compounds --- vascular aging --- vascular calcification --- arteriosclerosis --- Klotho --- chronic kidney disease (CKD), cancer --- diabetes --- heart failure --- micronutrients --- iron --- vitamins --- trace elements --- vitamin D --- seasonal variation --- lifestyle --- cytokines --- lipids --- mechanisms --- immunoregulatory --- eicosapentaenoic acid --- docosahexaenoic acid --- omega-3 polyunsaturated fatty acids --- coronary heart disease --- stretching --- TGF-β1 --- n/a


Book
Nutrition and Cardiovascular Health
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

There is unequivocal experimental, epidemiological, and clinical evidence demonstrating a correlation between diet and increased risk of cardiovascular disease (CVD). While nutritionally-poor diets can have a significant negative impact on cardiovascular health, dietary interventions with specific nutrients and/or functional foods are considered cost-effective and efficient components of prevention strategies. It has been estimated that nutritional factors may be responsible for approximately 40% of all CVD. Indeed, in one of the seminal studies conducted on modifiable risk factors and heart health (the INTERHEART study), >90% of all myocardial infarctions were attributed to preventable environmental factors with nutrition identified as one of the important determinants of CVD. There is an increasing public interest in and scientific investigation into establishing dietary approaches that can be undertaken for the prevention and treatment of CVD. This Special Issue provides an insight into the influential role of nutrition and dietary habits on cardiovascular health and disease, as well as their mechanisms of therapeutic and preventive action.

Keywords

Research & information: general --- Biology, life sciences --- Food & society --- magnesium deficiency --- arterial hypertension --- vascular tone --- arterial stiffness --- vascular remodeling --- insulin resistance --- magnesium supplementation --- dietary magnesium intake --- Zeb2 --- cardiac fibroblast --- activated myofibroblast --- cardiac fibrosis --- fibroblast contractility --- fish oil --- omega-3 fatty acids --- eicosapentaenoic acid (EPA) --- docosahexaenoic acid (DHA) --- cardiovascular disease --- irisin --- pediatric --- children --- nutrition --- diet --- body composition --- metabolic syndrome --- obesity, neonates --- Mediterranean diet --- inflammation --- nutrients --- polyphenols --- MUFA --- PUFA --- bioactive compounds --- phytosterols --- dietary pattern --- Aronia melanocarpa --- standardized extract --- dietary strategies --- supplementation --- cocaine --- cardiovascular health --- heart disease --- acute effects --- chronic effects --- marinobufagenin --- ouabain --- salt --- hypertension --- fibrosis --- Panax quinquefolius --- ginseng berry --- myocardial infarction --- phenolic compounds --- vascular aging --- vascular calcification --- arteriosclerosis --- Klotho --- chronic kidney disease (CKD), cancer --- diabetes --- heart failure --- micronutrients --- iron --- vitamins --- trace elements --- vitamin D --- seasonal variation --- lifestyle --- cytokines --- lipids --- mechanisms --- immunoregulatory --- eicosapentaenoic acid --- docosahexaenoic acid --- omega-3 polyunsaturated fatty acids --- coronary heart disease --- stretching --- TGF-β1 --- magnesium deficiency --- arterial hypertension --- vascular tone --- arterial stiffness --- vascular remodeling --- insulin resistance --- magnesium supplementation --- dietary magnesium intake --- Zeb2 --- cardiac fibroblast --- activated myofibroblast --- cardiac fibrosis --- fibroblast contractility --- fish oil --- omega-3 fatty acids --- eicosapentaenoic acid (EPA) --- docosahexaenoic acid (DHA) --- cardiovascular disease --- irisin --- pediatric --- children --- nutrition --- diet --- body composition --- metabolic syndrome --- obesity, neonates --- Mediterranean diet --- inflammation --- nutrients --- polyphenols --- MUFA --- PUFA --- bioactive compounds --- phytosterols --- dietary pattern --- Aronia melanocarpa --- standardized extract --- dietary strategies --- supplementation --- cocaine --- cardiovascular health --- heart disease --- acute effects --- chronic effects --- marinobufagenin --- ouabain --- salt --- hypertension --- fibrosis --- Panax quinquefolius --- ginseng berry --- myocardial infarction --- phenolic compounds --- vascular aging --- vascular calcification --- arteriosclerosis --- Klotho --- chronic kidney disease (CKD), cancer --- diabetes --- heart failure --- micronutrients --- iron --- vitamins --- trace elements --- vitamin D --- seasonal variation --- lifestyle --- cytokines --- lipids --- mechanisms --- immunoregulatory --- eicosapentaenoic acid --- docosahexaenoic acid --- omega-3 polyunsaturated fatty acids --- coronary heart disease --- stretching --- TGF-β1


Book
Human Milk and Lactation
Author:
ISBN: 3039289241 3039289233 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Human milk is uniquely tailored to meet infants’ specific nutritional requirements. However, it is more than just “milk”. This dynamic and bioactive fluid allows mother–infant signalling over lactation, guiding the infant in the developmental and physiological processes. It exerts protection and life-long biological effects, playing a crucial role in promoting healthy growth and optimal cognitive development. The latest scientific advances have provided insight into different components of human milk and their dynamic changes over time. However, the complexity of human milk composition and the synergistic mechanisms responsible for its beneficial health effects have not yet been unravelled. Filling this knowledge gap will shed light on the biology of the developing infant and will contribute to the optimization of infant feeding, particularly that of the most vulnerable infants. Greater understanding of human milk will also help in elucidating the best strategies for its storage and handling. The increasing knowledge on human milk’s bioactive compounds together with the rapidly-advancing technological achievements will greatly enhance their use as prophylactic or therapeutic agents. The current Special Issue aims to welcome original works and literature reviews further exploring the complexity of human milk composition, the mechanisms underlying the beneficial effects associated with breastfeeding, and the factors and determinants involved in lactation, including its promotion and support.

Keywords

high pressure processing --- n/a --- lipids --- supplementation --- protective factors --- infant --- carbohydrate --- mothers --- antioxidant capacity --- protein --- fat --- cytokines --- bioactive factors --- late preterm --- zinc --- infants --- docosahexaenoic acid (DHA) --- pregnancy --- eicosapentaenoic acid (EPA) --- Lipidomics --- magnesium --- omega-3 fatty acids --- vitamin D deficiency --- flow injection analysis --- human milk benefits --- multiple source method --- 3?-sialyllactose (3?SL) --- milk banking --- milk group --- pasteurization --- video instruction --- Milk Fat Globule Membrane --- bile salt stimulated lipase --- breastfeeding difficulties --- breastfeeding support --- prematurity --- carotenoids --- hormones --- phosphocholine --- amino acids --- targeted metabolomics --- high-performance liquid chromatography (HPLC) --- choline --- selenium --- ?-linolenic acid --- arachidonic acid (ARA) --- docosahexaenoic acid --- human milk fortification --- protease inhibitors --- celiac disease --- copper --- term --- adipokines --- iodine --- mammary gland --- nutritional status --- food frequency questionnaire --- neonate --- early breastfeeding cessation --- prospective study --- breastfeeding --- mothers’ own milk --- disialyllacto-N-tetraose (DSLNT) --- country --- lactating women --- undernourishment --- proteases --- preterm --- expressing --- dietary assessment --- retinol --- body composition --- duration of lactation --- passive immunization --- 2?-fucosyllactose (2?FL) --- phosphorus --- clinical trial --- growth factors --- infant formula --- digestive tract --- human milk oligosaccharides (HMO) --- sodium --- nutrition --- eicosapentaenoic acid --- lipid metabolites --- lactation --- nervonic acid --- ?-tocopherol --- macronutrients --- glycoprotein --- term infant --- term infants --- maternal diet --- promotion of breastfeeding --- potassium --- antioxidants --- maternal immunoglobulins --- Human Milk --- human milk --- Phospholipids --- flu vaccine --- lactational stage --- lactose --- storage --- dietary intake --- Preterm infant --- immune-active proteins --- colostrum --- human milk fat --- inadequate intake --- milk therapy --- endogenous peptide --- calcium --- fatty acids --- breast milk --- pumping --- secretor --- LC-MS --- n-9 fatty acid --- Lewis --- donor human milk --- antenatal --- online --- iron --- growth --- donor milk --- mothers' own milk

Listing 1 - 6 of 6
Sort by