Narrow your search

Library

ULiège (2)

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

VIVES (1)

More...

Resource type

book (3)

dissertation (1)


Language

English (4)


Year
From To Submit

2020 (4)

Listing 1 - 4 of 4
Sort by

Dissertation
How to decrease the churn rate of millennials in the non-life insurance sector - Case study of AG Insurance
Authors: --- --- --- ---
Year: 2020 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

Within the next five years, millennials will constitute 75% of the global workforce. However, because this generation faces more economical difficulties than the previous ones, they tend to be overlooked by insurance companies like AG Insurance who focus more on wealthier customer segments. Nonetheless, if insurers wait for millennials to correspond to their target requirements before starting to put into place processes to attract them, they might just miss the mark. 
The goal of this thesis was first to understand how the expectations that the millennials have influence the churn rate for the subscription to non-life insurance products. The second objective was to give recommendations to reduce this drop-out rate at AG Insurance


Book
Machine Learning in Insurance
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Machine learning is a relatively new field, without a unanimous definition. In many ways, actuaries have been machine learners. In both pricing and reserving, but also more recently in capital modelling, actuaries have combined statistical methodology with a deep understanding of the problem at hand and how any solution may affect the company and its customers. One aspect that has, perhaps, not been so well developed among actuaries is validation. Discussions among actuaries’ “preferred methods” were often without solid scientific arguments, including validation of the case at hand. Through this collection, we aim to promote a good practice of machine learning in insurance, considering the following three key issues: a) who is the client, or sponsor, or otherwise interested real-life target of the study? b) The reason for working with a particular data set and a clarification of the available extra knowledge, that we also call prior knowledge, besides the data set alone. c) A mathematical statistical argument for the validation procedure.


Book
Machine Learning in Insurance
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Machine learning is a relatively new field, without a unanimous definition. In many ways, actuaries have been machine learners. In both pricing and reserving, but also more recently in capital modelling, actuaries have combined statistical methodology with a deep understanding of the problem at hand and how any solution may affect the company and its customers. One aspect that has, perhaps, not been so well developed among actuaries is validation. Discussions among actuaries’ “preferred methods” were often without solid scientific arguments, including validation of the case at hand. Through this collection, we aim to promote a good practice of machine learning in insurance, considering the following three key issues: a) who is the client, or sponsor, or otherwise interested real-life target of the study? b) The reason for working with a particular data set and a clarification of the available extra knowledge, that we also call prior knowledge, besides the data set alone. c) A mathematical statistical argument for the validation procedure.


Book
Machine Learning in Insurance
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Machine learning is a relatively new field, without a unanimous definition. In many ways, actuaries have been machine learners. In both pricing and reserving, but also more recently in capital modelling, actuaries have combined statistical methodology with a deep understanding of the problem at hand and how any solution may affect the company and its customers. One aspect that has, perhaps, not been so well developed among actuaries is validation. Discussions among actuaries’ “preferred methods” were often without solid scientific arguments, including validation of the case at hand. Through this collection, we aim to promote a good practice of machine learning in insurance, considering the following three key issues: a) who is the client, or sponsor, or otherwise interested real-life target of the study? b) The reason for working with a particular data set and a clarification of the available extra knowledge, that we also call prior knowledge, besides the data set alone. c) A mathematical statistical argument for the validation procedure.

Keywords

History of engineering & technology --- deposit insurance --- implied volatility --- static arbitrage --- parameterization --- machine learning --- calibration --- dichotomous response --- predictive model --- tree boosting --- GLM --- validation --- generalised linear modelling --- zero-inflated poisson model --- telematics --- benchmark --- cross-validation --- prediction --- stock return volatility --- long-term forecasts --- overlapping returns --- autocorrelation --- chain ladder --- Bornhuetter-Ferguson --- maximum likelihood --- exponential families --- canonical parameters --- prior knowledge --- accelerated failure time model --- chain-ladder method --- local linear kernel estimation --- non-life reserving --- operational time --- zero-inflation --- overdispersion --- automobile insurance --- risk classification --- risk selection --- least-squares monte carlo method --- proxy modeling --- life insurance --- Solvency II --- claims prediction --- export credit insurance --- semiparametric modeling --- VaR estimation --- analyzing financial data --- deposit insurance --- implied volatility --- static arbitrage --- parameterization --- machine learning --- calibration --- dichotomous response --- predictive model --- tree boosting --- GLM --- validation --- generalised linear modelling --- zero-inflated poisson model --- telematics --- benchmark --- cross-validation --- prediction --- stock return volatility --- long-term forecasts --- overlapping returns --- autocorrelation --- chain ladder --- Bornhuetter-Ferguson --- maximum likelihood --- exponential families --- canonical parameters --- prior knowledge --- accelerated failure time model --- chain-ladder method --- local linear kernel estimation --- non-life reserving --- operational time --- zero-inflation --- overdispersion --- automobile insurance --- risk classification --- risk selection --- least-squares monte carlo method --- proxy modeling --- life insurance --- Solvency II --- claims prediction --- export credit insurance --- semiparametric modeling --- VaR estimation --- analyzing financial data

Listing 1 - 4 of 4
Sort by