Listing 1 - 10 of 28 | << page >> |
Sort by
|
Choose an application
Nuclear magnetic resonance (NMR) has evolved as a versatile tool in chemistry and biology. This scientific technique is based on the detection of magnetic moments of atomic nuclei arising due to an intrinsic property called spin because of their precession in static magnetic fields. Nuclei are excited by radio frequency (RF) magnetic fields and subsequently their precession is observed by the voltage they induce on an induction coil as they precess. In this book, we present some of the most exciting developments in the field of NMR: for example, new developments in NMR instrumentation, new magnet technology, RF coil design, the design of novel NMR sensors, and new developments of methods in solution and solid-state NMR These range from new methods for the fast acquisition of 2D spectrum to NMR studies of molecular interactions in ionic solutions. Solid-state methods for the analysis of polyvinyl chloride and NMR studies of torsion angles in polypeptides are also included. The book will be a useful reference for practitioners in the field and at the same time will appeal to a broad audience interested in the general area of NMR.
Choose an application
Nuclear magnetic resonance (NMR) has evolved as a versatile tool in chemistry and biology. This scientific technique is based on the detection of magnetic moments of atomic nuclei arising due to an intrinsic property called spin because of their precession in static magnetic fields. Nuclei are excited by radio frequency (RF) magnetic fields and subsequently their precession is observed by the voltage they induce on an induction coil as they precess. In this book, we present some of the most exciting developments in the field of NMR: for example, new developments in NMR instrumentation, new magnet technology, RF coil design, the design of novel NMR sensors, and new developments of methods in solution and solid-state NMR These range from new methods for the fast acquisition of 2D spectrum to NMR studies of molecular interactions in ionic solutions. Solid-state methods for the analysis of polyvinyl chloride and NMR studies of torsion angles in polypeptides are also included. The book will be a useful reference for practitioners in the field and at the same time will appeal to a broad audience interested in the general area of NMR.
Choose an application
Choose an application
Nuclear magnetic resonance (NMR) has evolved as a versatile tool in chemistry and biology. This scientific technique is based on the detection of magnetic moments of atomic nuclei arising due to an intrinsic property called spin because of their precession in static magnetic fields. Nuclei are excited by radio frequency (RF) magnetic fields and subsequently their precession is observed by the voltage they induce on an induction coil as they precess. In this book, we present some of the most exciting developments in the field of NMR: for example, new developments in NMR instrumentation, new magnet technology, RF coil design, the design of novel NMR sensors, and new developments of methods in solution and solid-state NMR These range from new methods for the fast acquisition of 2D spectrum to NMR studies of molecular interactions in ionic solutions. Solid-state methods for the analysis of polyvinyl chloride and NMR studies of torsion angles in polypeptides are also included. The book will be a useful reference for practitioners in the field and at the same time will appeal to a broad audience interested in the general area of NMR.
Choose an application
"This book is about Pioneers of Magnetic Resonance"--
Magnetic resonance --- Nuclear magnetic resonance. --- History
Choose an application
Magnetic resonance is a field that has expanded to a range of disciplines and applications, both in basic research and in its applications, and polarized targets have played an important role in this growth. This volume covers the range of disciplines required for understanding polarized targets, focusing in particular on the theoretical and technical developments made in dynamic nuclear polarization (DNP), NMR polarization measurement, high-power refrigeration, and magnet technology. Beyond particle and nuclear physics experiments, dynamically polarized nuclei have been used for experiments involving structural studies of biomolecules by neutron scattering and by NMR spectroscopy. Emerging applications in MRI are also benefiting from the sensitivity and contrast enhancements made possible by DNP or other hyperpolarization techniques. Topics are introduced theoretically using language and terminology suitable for scientists and advanced students from a range of disciplines, making this an accessible resource to this interdisciplinary field.
Choose an application
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Science: general issues --- bioaffinity chromatography --- surface plasmon resonance --- nuclear magnetic resonance --- mass spectrometry-based approaches --- ligand-fishing experiments --- bioaffinity chromatography --- surface plasmon resonance --- nuclear magnetic resonance --- mass spectrometry-based approaches --- ligand-fishing experiments
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Listing 1 - 10 of 28 | << page >> |
Sort by
|