Narrow your search

Library

FARO (8)

KU Leuven (8)

LUCA School of Arts (8)

Odisee (8)

Thomas More Kempen (8)

Thomas More Mechelen (8)

UCLL (8)

ULB (8)

ULiège (8)

VIVES (8)

More...

Resource type

book (24)


Language

English (24)


Year
From To Submit

2020 (24)

Listing 1 - 10 of 24 << page
of 3
>>
Sort by

Book
Aeroacustic and Vibroacoustic Advancement in Aerospace and Automotive Systems
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue highlights the latest enhancements in the abatement of noise and vibrations in aerospace and automotive systems. The reduction of acoustic emissions and the improvement of interior cabin comfort desired by all major transportation industries, as these areas have a direct impact on customer satisfaction and, consequently, the commercial success of new products. Topics covered in this Special Issue deal with computational approaches, instrumentation and data analysis related to noise and vibrations of fixed-wing aircraft, satellites, spacecraft, automobiles, and trains, covering aerodynamically generated noise, engine noise, sound absorption, cabin acoustic treatments, duct acoustics, and vibroacoustic properties of materials. This Special Issue also focuses on industrial aspects. Existing procedures and algorithms that are useful in reaching the abovementioned objectives in the most efficient way are illustrated in the collected papers.


Book
Aeroacustic and Vibroacoustic Advancement in Aerospace and Automotive Systems
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue highlights the latest enhancements in the abatement of noise and vibrations in aerospace and automotive systems. The reduction of acoustic emissions and the improvement of interior cabin comfort desired by all major transportation industries, as these areas have a direct impact on customer satisfaction and, consequently, the commercial success of new products. Topics covered in this Special Issue deal with computational approaches, instrumentation and data analysis related to noise and vibrations of fixed-wing aircraft, satellites, spacecraft, automobiles, and trains, covering aerodynamically generated noise, engine noise, sound absorption, cabin acoustic treatments, duct acoustics, and vibroacoustic properties of materials. This Special Issue also focuses on industrial aspects. Existing procedures and algorithms that are useful in reaching the abovementioned objectives in the most efficient way are illustrated in the collected papers.


Book
Numerical Simulations of Turbulent Combustion
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

undefined

Keywords

History of engineering & technology --- sidewall quenching --- LES --- premixed methane --- flame-wall interaction --- FGM --- Lewis number --- flame curvature --- iso-scalar non-material surfaces --- turbulent premixed spherical flame --- reaction waves --- turbulent reacting flows --- turbulent consumption velocity --- bending effect --- reaction surface area --- molecular transport --- direct numerical simulations --- turbulent flame --- premixed turbulent combustion --- countergradient transport --- flame surface density --- scalar dissipation rate --- modeling --- large eddy simulation --- confined --- boundary layer flashback --- turbulent combustion --- hydrogen --- autoignition modelling --- reduced chemical kinetics --- gasoline surrogates --- engine knock --- spray combustion --- evaporative cooling --- flame surface wrinkling modeling --- thickened flame --- flamelet generated manifold --- sidewall quenching --- LES --- premixed methane --- flame-wall interaction --- FGM --- Lewis number --- flame curvature --- iso-scalar non-material surfaces --- turbulent premixed spherical flame --- reaction waves --- turbulent reacting flows --- turbulent consumption velocity --- bending effect --- reaction surface area --- molecular transport --- direct numerical simulations --- turbulent flame --- premixed turbulent combustion --- countergradient transport --- flame surface density --- scalar dissipation rate --- modeling --- large eddy simulation --- confined --- boundary layer flashback --- turbulent combustion --- hydrogen --- autoignition modelling --- reduced chemical kinetics --- gasoline surrogates --- engine knock --- spray combustion --- evaporative cooling --- flame surface wrinkling modeling --- thickened flame --- flamelet generated manifold


Book
Aeroacustic and Vibroacoustic Advancement in Aerospace and Automotive Systems
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue highlights the latest enhancements in the abatement of noise and vibrations in aerospace and automotive systems. The reduction of acoustic emissions and the improvement of interior cabin comfort desired by all major transportation industries, as these areas have a direct impact on customer satisfaction and, consequently, the commercial success of new products. Topics covered in this Special Issue deal with computational approaches, instrumentation and data analysis related to noise and vibrations of fixed-wing aircraft, satellites, spacecraft, automobiles, and trains, covering aerodynamically generated noise, engine noise, sound absorption, cabin acoustic treatments, duct acoustics, and vibroacoustic properties of materials. This Special Issue also focuses on industrial aspects. Existing procedures and algorithms that are useful in reaching the abovementioned objectives in the most efficient way are illustrated in the collected papers.

Keywords

History of engineering & technology --- flexible spacecraft --- periodic disturbance compensation --- compensate torque design --- vibration attenuation --- reaction wheel. --- vibration analysis --- FEM --- multibody simulations --- Plasma flow control --- multichannel discharge --- plasma synthetic actuator --- actuator array --- analytic model --- centrifugal fan --- unsteady flow --- vibroacoustics --- fluid-structure-acoustic coupling --- optimization --- high-speed train --- pantograph --- aerodynamic noise --- large eddy simulation --- acoustic finite element method --- transonic buffet --- tangential slot --- steady and periodic blowing --- postpone of buffet onset --- buffet load alleviation --- component mode synthesis --- petrol engine --- NVH --- FRF --- leakage location --- Lamb wave --- beamforming --- spacecraft in orbit --- vibro-acoustics --- MDO --- aircraft fuselage --- aeroacoustics --- acoustics --- noise --- vibration --- aeronautics --- automotive --- flexible spacecraft --- periodic disturbance compensation --- compensate torque design --- vibration attenuation --- reaction wheel. --- vibration analysis --- FEM --- multibody simulations --- Plasma flow control --- multichannel discharge --- plasma synthetic actuator --- actuator array --- analytic model --- centrifugal fan --- unsteady flow --- vibroacoustics --- fluid-structure-acoustic coupling --- optimization --- high-speed train --- pantograph --- aerodynamic noise --- large eddy simulation --- acoustic finite element method --- transonic buffet --- tangential slot --- steady and periodic blowing --- postpone of buffet onset --- buffet load alleviation --- component mode synthesis --- petrol engine --- NVH --- FRF --- leakage location --- Lamb wave --- beamforming --- spacecraft in orbit --- vibro-acoustics --- MDO --- aircraft fuselage --- aeroacoustics --- acoustics --- noise --- vibration --- aeronautics --- automotive


Book
Recent Numerical Advances in Fluid Mechanics
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent decades, the field of computational fluid dynamics has made significant advances in enabling advanced computing architectures to understand many phenomena in biological, geophysical, and engineering fluid flows. Almost all research areas in fluids use numerical methods at various complexities: from molecular to continuum descriptions; from laminar to turbulent regimes; from low speed to hypersonic, from stencil-based computations to meshless approaches; from local basis functions to global expansions, as well as from first-order approximation to high-order with spectral accuracy. Many successful efforts have been put forth in dynamic adaptation strategies, e.g., adaptive mesh refinement and multiresolution representation approaches. Furthermore, with recent advances in artificial intelligence and heterogeneous computing, the broader fluids community has gained the momentum to revisit and investigate such practices. This Special Issue, containing a collection of 13 papers, brings together researchers to address recent numerical advances in fluid mechanics.

Keywords

History of engineering & technology --- fluid-structure interaction --- monolithic method --- Updated Lagrangian --- Arbitrary Lagrangian Eulerian --- computational aerodynamics --- Kutta condition --- compressible flow --- stream function --- non-linear Schrödinger equation --- cubic B-spline basis functions --- Galerkin method --- pressure tunnel --- hydraulic fracturing --- transient flow --- finite element method (FEM) --- Abaqus Finite Element Analysis (FEA) --- computational fluid dynamics --- RANS closures --- uncertainty quantification --- Reynolds stress tensor --- backward-facing step --- OpenFOAM --- large eddy simulations (LES) --- shock capturing --- adaptive filter --- explicit filtering --- jet --- proper orthogonal decomposition --- coherent structures --- turbulence --- vector flow fields --- PIV --- buildings --- urban area --- pollution dispersion --- Large Eddy Simulation (LES) --- multiple drop impact --- computational fluid dynamics (CFD) simulation --- volume-of-fluid --- crater dimensions --- vorticity --- transient incompressible Navier-Stokes --- meshless point collocation method --- stream function-vorticity formulation --- strong form --- explicit time integration --- wall layer model --- LES --- separated flow --- body fitted --- immersed boundary --- reduced order modeling --- Kolmogorov n-width --- Galerkin projection --- turbulent flows --- reduced order model --- closure model --- variational multiscale method --- deep residual neural network --- internal combustion engines --- liquid-cooling system --- heat transfer --- fluid-structure interaction --- monolithic method --- Updated Lagrangian --- Arbitrary Lagrangian Eulerian --- computational aerodynamics --- Kutta condition --- compressible flow --- stream function --- non-linear Schrödinger equation --- cubic B-spline basis functions --- Galerkin method --- pressure tunnel --- hydraulic fracturing --- transient flow --- finite element method (FEM) --- Abaqus Finite Element Analysis (FEA) --- computational fluid dynamics --- RANS closures --- uncertainty quantification --- Reynolds stress tensor --- backward-facing step --- OpenFOAM --- large eddy simulations (LES) --- shock capturing --- adaptive filter --- explicit filtering --- jet --- proper orthogonal decomposition --- coherent structures --- turbulence --- vector flow fields --- PIV --- buildings --- urban area --- pollution dispersion --- Large Eddy Simulation (LES) --- multiple drop impact --- computational fluid dynamics (CFD) simulation --- volume-of-fluid --- crater dimensions --- vorticity --- transient incompressible Navier-Stokes --- meshless point collocation method --- stream function-vorticity formulation --- strong form --- explicit time integration --- wall layer model --- LES --- separated flow --- body fitted --- immersed boundary --- reduced order modeling --- Kolmogorov n-width --- Galerkin projection --- turbulent flows --- reduced order model --- closure model --- variational multiscale method --- deep residual neural network --- internal combustion engines --- liquid-cooling system --- heat transfer


Book
Aero/Hydrodynamics and Symmetry
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents collective works published in the recent Special Issue (SI) entitled "Aero/Hydrodynamics and Symmetry". These works address the existence of symmetry and its breakdown in aero-/hydro-dynamics and their related applications. The presented problems are complex nonlinear, non-Newtonian fluid flow problems that are (in some cases) coupled with heat transfer, phase change, nanofluidic, and magnetohydrodynamics phenomena. The applications vary and range from polymer chain transfer in micro-channel to the evaluation of vertical axis wind turbines, as well as autonomous underwater hovering vehicles. Recent advances in numerical, theoretical, and experimental methodologies, as well as finding new physics, new methodological developments, and their limitations are presented within the scope of the current book. Among others, in the presented works, special attention is paid to validation and improving the accuracy of the presented methodologies. This book brings together a collection of inter-/multi-disciplinary works applied to many engineering applications in a coherent manner.

Keywords

History of engineering & technology --- Savonius vertical axis wind turbine --- horizontal overlap ratio --- vertical overlap ratio --- torque coefficient --- power coefficient --- Advection–diffusion --- fractional derivative --- concentrated source --- integral transform --- Burgers’ fluid --- velocity field --- shear stress --- Laplace transform --- modified Bessel function --- Stehfest’s algorithm --- MATHCAD --- electroosmotic flow --- power law fluid --- nanoparticles --- MHD --- entropy generation --- convergence analysis --- residual error --- autonomous underwater vehicle (AUV) --- airborne-launched AUV --- autonomous underwater hovering vehicle (AUH) --- water entry impact force --- computational fluid dynamics (CFD) --- two-phase flow --- Autonomous Underwater Vehicle (AUV) --- Autonomous Underwater Hovering Vehicle (AUH) --- hydrodynamic interaction --- response amplitude operator (RAO) --- wave effects --- symmetric flying wing --- plasma flow control --- energy --- stall --- dimensionless frequency --- particle image velocimetry --- SA–NaAlg fluid --- porosity --- fractional model --- Atangana–Baleanu derivative --- large eddy simulation --- subgrid scale model --- diffuser --- dynamic one equation model --- Vreman model --- separation --- heat conduction --- non-fourier --- solution structure theorems --- superposition approach --- Buongiorno model --- unsteady flow --- nanoliquid --- special third-grade liquid --- non-linear thermal radiation --- magneto hydro-dynamics (MHD) --- dissipative particle dynamics (DPD) --- Hartmann number (Ha-value) --- harmony bond coefficient or spring constant (K) --- Savonius vertical axis wind turbine --- horizontal overlap ratio --- vertical overlap ratio --- torque coefficient --- power coefficient --- Advection–diffusion --- fractional derivative --- concentrated source --- integral transform --- Burgers’ fluid --- velocity field --- shear stress --- Laplace transform --- modified Bessel function --- Stehfest’s algorithm --- MATHCAD --- electroosmotic flow --- power law fluid --- nanoparticles --- MHD --- entropy generation --- convergence analysis --- residual error --- autonomous underwater vehicle (AUV) --- airborne-launched AUV --- autonomous underwater hovering vehicle (AUH) --- water entry impact force --- computational fluid dynamics (CFD) --- two-phase flow --- Autonomous Underwater Vehicle (AUV) --- Autonomous Underwater Hovering Vehicle (AUH) --- hydrodynamic interaction --- response amplitude operator (RAO) --- wave effects --- symmetric flying wing --- plasma flow control --- energy --- stall --- dimensionless frequency --- particle image velocimetry --- SA–NaAlg fluid --- porosity --- fractional model --- Atangana–Baleanu derivative --- large eddy simulation --- subgrid scale model --- diffuser --- dynamic one equation model --- Vreman model --- separation --- heat conduction --- non-fourier --- solution structure theorems --- superposition approach --- Buongiorno model --- unsteady flow --- nanoliquid --- special third-grade liquid --- non-linear thermal radiation --- magneto hydro-dynamics (MHD) --- dissipative particle dynamics (DPD) --- Hartmann number (Ha-value) --- harmony bond coefficient or spring constant (K)


Book
Assessment and Nonlinear Modeling of Wave, Tidal and Wind Energy Converters and Turbines
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue “Assessment and Nonlinear Modeling of Wave, Tidal, and Wind Energy Converters and Turbines” contributes original research to stimulate the continuing progress of the offshore renewable energy (ORE) field, with a focus on state-of-the-art numerical approaches developed for the design and analysis of ORE devices. Particularly, this collection provides new methodologies, analytical/numerical tools, and theoretical methods that deal with engineering problems in the ORE field of wave, wind, and current structures. This Special Issue covers a wide range of multidisciplinary aspects, such as the 1) study of generalized interaction wake model systems with elm variation for offshore wind farms; 2) a flower pollination method based on global maximum power point tracking strategy for point-absorbing type wave energy converters; 3) performance optimization of a Kirsten–Boeing turbine using a metamodel based on neural networks coupled with CFD; 4) proposal of a novel semi-submersible floating wind turbine platform composed of inclined columns and multi-segmented mooring lines; 5) reduction of tower fatigue through blade back twist and active pitch-to-stall control strategy for a semi-submersible floating offshore wind turbine; 6) assessment of primary energy conversion of a closed-circuit OWC wave energy converter; 7) development and validation of a wave-to-wire model for two types of OWC wave energy converters; 8) assessment of a hydrokinetic energy converter based on vortex-induced angular oscillations of a cylinder; 9) application of wave-turbulence decomposition methods on a tidal energy site assessment; 10) parametric study for an oscillating water column wave energy conversion system installed on a breakwater; 11) optimal dimensions of a semisubmersible floating platform for a 10 MW wind turbine; 12) fatigue life assessment for power cables floating in offshore wind turbines.

Keywords

History of engineering & technology --- off-shore wind farms (OSWFs) --- wake model --- wind turbine (WT) --- Extreme Learning Machine (ELM) --- wind power (WP) --- large-eddy simulation (LES) --- point-absorbing --- wave energy converter (WEC) --- maximum power point tracking (MPPT) --- flower pollination algorithm (FPA) --- power take-off (PTO) --- hill-climbing method --- Kirsten–Boeing --- vertical axis turbine --- optimization --- neural nets --- Tensorflow --- ANSYS CFX --- metamodeling --- FOWT --- multi-segmented mooring line --- inclined columns --- semi-submersible --- AFWT --- floating offshore wind turbine (FOWT) --- pitch-to-stall --- blade back twist --- tower fore–aft moments --- negative damping --- blade flapwise moment --- tower axial fatigue life --- wave energy --- oscillating water column --- tank testing --- valves --- air compressibility --- air turbine --- wave-to-wire model --- energy harnessing --- energy converter --- flow-induced oscillations --- vortex-induced vibration --- flow–structure interaction --- hydrodynamics --- vortex shedding --- cylinder wake --- tidal energy --- site assessment --- wave-current interaction --- turbulence --- integral length scales --- wave-turbulence decomposition --- OWC --- wave power converting system --- parametric study --- caisson breakwater application --- floating offshore wind turbines --- frequency domain model --- semisubmersible platform --- 10 MW wind turbines --- large floating platform --- platform optimization --- wind energy --- floating offshore wind turbine --- dynamic analysis --- fatigue life assessment --- flexible power cables --- off-shore wind farms (OSWFs) --- wake model --- wind turbine (WT) --- Extreme Learning Machine (ELM) --- wind power (WP) --- large-eddy simulation (LES) --- point-absorbing --- wave energy converter (WEC) --- maximum power point tracking (MPPT) --- flower pollination algorithm (FPA) --- power take-off (PTO) --- hill-climbing method --- Kirsten–Boeing --- vertical axis turbine --- optimization --- neural nets --- Tensorflow --- ANSYS CFX --- metamodeling --- FOWT --- multi-segmented mooring line --- inclined columns --- semi-submersible --- AFWT --- floating offshore wind turbine (FOWT) --- pitch-to-stall --- blade back twist --- tower fore–aft moments --- negative damping --- blade flapwise moment --- tower axial fatigue life --- wave energy --- oscillating water column --- tank testing --- valves --- air compressibility --- air turbine --- wave-to-wire model --- energy harnessing --- energy converter --- flow-induced oscillations --- vortex-induced vibration --- flow–structure interaction --- hydrodynamics --- vortex shedding --- cylinder wake --- tidal energy --- site assessment --- wave-current interaction --- turbulence --- integral length scales --- wave-turbulence decomposition --- OWC --- wave power converting system --- parametric study --- caisson breakwater application --- floating offshore wind turbines --- frequency domain model --- semisubmersible platform --- 10 MW wind turbines --- large floating platform --- platform optimization --- wind energy --- floating offshore wind turbine --- dynamic analysis --- fatigue life assessment --- flexible power cables


Book
Internal Combustion Engines Improving Performance, Fuel Economy and Emissions
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue, consisting of 14 papers, presents the latest findings concerning both numerical and experimental investigations. Their aim is to achieve a reduction in pollutant emissions, as well as an improvement in fuel economy and performance, for internal combustion engines. This will provide readers with a comprehensive, unbiased, and scientifically sound overview of the most recent research and technological developments in this field. More specific topics include: 3D CFD detailed analysis of the fuel injection, combustion and exhaust aftertreatments processes, 1D and 0D, semi-empirical, neural network-based control-oriented models, experimental analysis and the optimization of both conventional and innovative combustion processes.

Keywords

History of engineering & technology --- homogeneous charge compression ignition (HCCI) --- exhaust gas recirculation (EGR) --- dual-fuel --- dimethyl ether (DME) --- exhaust emission --- co-combustion --- dual fuel --- combustion stability --- coefficient of variation of IMEP --- probability density of IMEP --- 0D model --- predictive model --- tumble --- turbulent intensity --- spark-ignition engine --- engine geometry --- AdBlue® injection --- large eddy simulation --- Eulerian–Lagrangian approach --- thermal decomposition --- wall–film formation --- conversion efficiency --- hybrid electric vehicle --- real driving emissions --- fuel consumption --- vehicle performance --- electric supercharger --- Lambda-1 engine --- 48 V Mild Hybrid --- electrically assisted turbocharger --- variable geometry turbocharger-exhaust gas recirculation --- oxygen concentration --- active disturbance rejection control --- model-based --- control --- diesel engine --- ANN --- physics-based model --- semi-empirical model --- CNG --- diesel fuel --- dual fuel engine --- rate of heat release --- ignition delay --- burn duration --- exhaust gas emission --- camless --- electromagnetic variable valve train --- magnetorheological buffer --- soft landing --- solenoid injectors --- indirect-acting piezoelectric injectors --- direct-acting piezoelectric injectors --- engine-out emissions --- combustion noise --- diesel engines --- pollutant emission reduction --- mixing process --- advanced injection strategy --- varying injection rate --- engine torque estimation --- GDI engines --- extended state observer --- online performance --- torque --- nitrogen oxide emissions --- model-based control --- engines --- numerical simulation --- pollutant emissions prediction --- computational fluid dynamics --- homogeneous charge compression ignition (HCCI) --- exhaust gas recirculation (EGR) --- dual-fuel --- dimethyl ether (DME) --- exhaust emission --- co-combustion --- dual fuel --- combustion stability --- coefficient of variation of IMEP --- probability density of IMEP --- 0D model --- predictive model --- tumble --- turbulent intensity --- spark-ignition engine --- engine geometry --- AdBlue® injection --- large eddy simulation --- Eulerian–Lagrangian approach --- thermal decomposition --- wall–film formation --- conversion efficiency --- hybrid electric vehicle --- real driving emissions --- fuel consumption --- vehicle performance --- electric supercharger --- Lambda-1 engine --- 48 V Mild Hybrid --- electrically assisted turbocharger --- variable geometry turbocharger-exhaust gas recirculation --- oxygen concentration --- active disturbance rejection control --- model-based --- control --- diesel engine --- ANN --- physics-based model --- semi-empirical model --- CNG --- diesel fuel --- dual fuel engine --- rate of heat release --- ignition delay --- burn duration --- exhaust gas emission --- camless --- electromagnetic variable valve train --- magnetorheological buffer --- soft landing --- solenoid injectors --- indirect-acting piezoelectric injectors --- direct-acting piezoelectric injectors --- engine-out emissions --- combustion noise --- diesel engines --- pollutant emission reduction --- mixing process --- advanced injection strategy --- varying injection rate --- engine torque estimation --- GDI engines --- extended state observer --- online performance --- torque --- nitrogen oxide emissions --- model-based control --- engines --- numerical simulation --- pollutant emissions prediction --- computational fluid dynamics

Listing 1 - 10 of 24 << page
of 3
>>
Sort by