Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2020 (6)

Listing 1 - 6 of 6
Sort by

Book
Polymer Processing: Modeling and Correlations Finalized to Tailoring the Plastic Part Morphology and Properties
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The analysis of polymer processing operations is a wide and complex subject; during polymer processing, viscoelastic fluids are forced to deform into desired geometries using non-homogeneous velocity and temperature fields down to solidification. The objective of analysis is the identification of processing conditions, which are finalized in the optimization of product final properties, which, in turn, are determined by the final part morphology. Depending on the operating conditions, the properties of the final part can change more than one order of magnitude. Properties of interest include the mechanical, optical, barrier, permeability, and biodegradability, and any other property of practical relevance including the characteristics of the surfaces as its finishing and wettability, which are connected to one another. The scope of this Special Issue is to select progress in or reviews of the understanding/description of the phenomena involved along the chain of processing–morphology–properties. Along this virtual chain, modeling may be a useful approach, and within the objective of understanding fundamental aspects, it may also be relevant to compare selected characteristics of the process and the material with the characteristics of the resulting morphology and then with the properties of the final part. This approach suggests the title: “Polymer Processing: Modeling and Correlations Finalized to Tailoring the Plastic Part Morphology and Properties”.


Book
Computer-Aided Manufacturing and Design
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recent advancements in computer technology have allowed for designers to have direct control over the production process through the help of computer-based tools, creating the possibility of a completely integrated design and manufacturing process. Over the last few decades, "artificial intelligence" (AI) techniques, such as machine learing and deep learning, have been topics of interest in computer-based design and manufacturing research fields. However, efforts to develop computer-based AI to handle big data in design and manufacturing have not yet been successful. This Special Issue aims to collect novel articles covering artificial intelligence-based design, manufacturing, and data-driven design. It will comprise academics, researchers, mechanical, manufacturing, production and industrial engineers and professionals related to engineering design and manufacturing.


Book
Polymer Processing: Modeling and Correlations Finalized to Tailoring the Plastic Part Morphology and Properties
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The analysis of polymer processing operations is a wide and complex subject; during polymer processing, viscoelastic fluids are forced to deform into desired geometries using non-homogeneous velocity and temperature fields down to solidification. The objective of analysis is the identification of processing conditions, which are finalized in the optimization of product final properties, which, in turn, are determined by the final part morphology. Depending on the operating conditions, the properties of the final part can change more than one order of magnitude. Properties of interest include the mechanical, optical, barrier, permeability, and biodegradability, and any other property of practical relevance including the characteristics of the surfaces as its finishing and wettability, which are connected to one another. The scope of this Special Issue is to select progress in or reviews of the understanding/description of the phenomena involved along the chain of processing–morphology–properties. Along this virtual chain, modeling may be a useful approach, and within the objective of understanding fundamental aspects, it may also be relevant to compare selected characteristics of the process and the material with the characteristics of the resulting morphology and then with the properties of the final part. This approach suggests the title: “Polymer Processing: Modeling and Correlations Finalized to Tailoring the Plastic Part Morphology and Properties”.


Book
Computer-Aided Manufacturing and Design
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recent advancements in computer technology have allowed for designers to have direct control over the production process through the help of computer-based tools, creating the possibility of a completely integrated design and manufacturing process. Over the last few decades, "artificial intelligence" (AI) techniques, such as machine learing and deep learning, have been topics of interest in computer-based design and manufacturing research fields. However, efforts to develop computer-based AI to handle big data in design and manufacturing have not yet been successful. This Special Issue aims to collect novel articles covering artificial intelligence-based design, manufacturing, and data-driven design. It will comprise academics, researchers, mechanical, manufacturing, production and industrial engineers and professionals related to engineering design and manufacturing.


Book
Polymer Processing: Modeling and Correlations Finalized to Tailoring the Plastic Part Morphology and Properties
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The analysis of polymer processing operations is a wide and complex subject; during polymer processing, viscoelastic fluids are forced to deform into desired geometries using non-homogeneous velocity and temperature fields down to solidification. The objective of analysis is the identification of processing conditions, which are finalized in the optimization of product final properties, which, in turn, are determined by the final part morphology. Depending on the operating conditions, the properties of the final part can change more than one order of magnitude. Properties of interest include the mechanical, optical, barrier, permeability, and biodegradability, and any other property of practical relevance including the characteristics of the surfaces as its finishing and wettability, which are connected to one another. The scope of this Special Issue is to select progress in or reviews of the understanding/description of the phenomena involved along the chain of processing–morphology–properties. Along this virtual chain, modeling may be a useful approach, and within the objective of understanding fundamental aspects, it may also be relevant to compare selected characteristics of the process and the material with the characteristics of the resulting morphology and then with the properties of the final part. This approach suggests the title: “Polymer Processing: Modeling and Correlations Finalized to Tailoring the Plastic Part Morphology and Properties”.


Book
Computer-Aided Manufacturing and Design
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recent advancements in computer technology have allowed for designers to have direct control over the production process through the help of computer-based tools, creating the possibility of a completely integrated design and manufacturing process. Over the last few decades, "artificial intelligence" (AI) techniques, such as machine learing and deep learning, have been topics of interest in computer-based design and manufacturing research fields. However, efforts to develop computer-based AI to handle big data in design and manufacturing have not yet been successful. This Special Issue aims to collect novel articles covering artificial intelligence-based design, manufacturing, and data-driven design. It will comprise academics, researchers, mechanical, manufacturing, production and industrial engineers and professionals related to engineering design and manufacturing.

Listing 1 - 6 of 6
Sort by